Application of Multi-Well Steam Injection and CO2 Technology in Heavy Oil Production, Liaohe Oilfield

Author(s):  
Fu Jin ◽  
Wang Xi ◽  
Zhang Shunyuan ◽  
Liu Bingshan ◽  
Chen Chen
2021 ◽  
Author(s):  
Mohammed Al Asimi ◽  
Nasar Al Qasabi ◽  
Duc Le ◽  
Yuchen Zhang ◽  
Di Zhu ◽  
...  

Abstract After successful implementation of data analytics for steamflood optimization at the Mukhaizna heavy oil field in Oman late 2018, Occidental expanded the project to two additional areas with a total of 626 wells in 2019, followed by full field coverage of more than 3,200 wells in 2020. In 2019, two separate low-fidelity proxy models were built to model the two pilot areas. The models were updated with more features to account for additional reservoir phenomena and a larger scope. On the proxy engine side, speed and robustness were improved, resulting in reduced CPU processing time and lower cost. Because of advancements in software programing and the pilots’ encouraging production performance, full-field coverage was accelerated so the model could support the efforts in optimizing steam injection during the 2020 OPEC+ production cut, not only to comply with allotted quotas, but also to allocate the resources optimally, especially the costly steam. Good improvements have been observed in overall steamflood performance, the models’ capabilities, and the optimization workflow. The steam/oil ratio has been reduced through the increase in oil production in both expanded study areas while keeping the total steam injection volume constant. Overall field steam utilization was improved both during the 2020 OPEC+ production cuts and during the production ramp-up stage afterward. With the continuous improvement in supporting tools and scripts, most of the steam optimization process steps were automated, from preparing, checking, and formatting input data to analyzing, validating, and visualizing the model outputs. Another result of these improvements was the development of a user-friendly web application to manage the model workflow efficiently. This web app greatly improved the process of case submittals, including data preparation and QC, running models (history matching and forecasting), as well as visualization of the entire workflow. In terms of optimization workflow, these improvements resulted in less time spent by the field optimization engineer in updating, refreshing, and generating new model recommendations. It also helped reduce the time spent by the reservoir management team (RMT) to test and validate the new ideas before field implementation. This paper will describe the improvements in the proxy model and the overall optimization process, show the observed oil production increases, and discuss the challenges faced and the lessons learned.


2011 ◽  
Author(s):  
Mohammed Issa ◽  
James Fleming ◽  
Kelvin Wonitoy

SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 494-502 ◽  
Author(s):  
Z.. Wu ◽  
S.. Vasantharajan ◽  
M.. El-Mandouh ◽  
P.V.. V. Suryanarayana

Summary In this paper, we present a new, semianalytical gravity-drainage model to predict the oil production of a cyclic-steam-stimulated horizontal well. The underlying assumption is that the cyclic steam injection creates a cylindrical steam chamber in the upper area of the well. Condensed water and heated oil in the chamber are driven by gravity and pressure drawdown toward the well. The heat loss during the soak period and during oil production is estimated under the assumption of vertical and radial conduction. The average temperature change in the chamber during the cycle is calculated using a semianalytical expression. Nonlinear, second-order ordinary differential equations are derived to describe the pressure distribution caused by the two-phase flow in the wellbore. A simple iteration scheme is proposed to solve these equations. The influx of heated oil and condensed water into the horizontal wellbore is calculated under the assumption of steady-state radial flow. The solution from the semianalytical formulation is compared against the results from a commercial thermal simulator for an example problem. It is shown that the model results are in good agreement with those obtained from reservoir simulation. Sensitivity studies for optimization of wellbore length, gravity drainage, bottomhole pressure, and steam-injection rate are conducted with the model. Results indicate that the proposed model can be used in the optimization of individual-well performance in cyclic-steam-injection heavy-oil development. The semianalytical thermal model presented in this work can offer an attractive alternative to numerical simulation for planning heavy-oil field development.


2010 ◽  
Vol 7 (3) ◽  
pp. 422-427 ◽  
Author(s):  
Guangyou Zhu ◽  
Shuichang Zhang ◽  
Qicheng Liu ◽  
Jingyan Zhang ◽  
Junyin Yang ◽  
...  

2011 ◽  
Vol 239-242 ◽  
pp. 3069-3073 ◽  
Author(s):  
Qiang Zheng ◽  
Hui Qing Liu ◽  
Zhan Xi Pang ◽  
Fang Li

By using the technology of numerical reservoir simulation, we have compared superheated steam soak with saturated steam soak in area of heating, effect of distillation, capability of increasing oil production, volume of steam in need to evaluate the effect of superheated steam soak in heavy oil reservoirs. Analyzed the sensitivity of parameters like steam injection intensity, steam injection rate, soak time, degree of superheat to conclude the rule that they affect on recovery percentage. The research shows that, heating radius of superheated steam is greater than that of saturated steam, distillation effect of superheated steam is better than that of saturated steam, oil production of superheated steam is more than that of saturated steam, steam volume in need of superheated steam is less than that of saturated steam. Recovery percentage of superheated steam soak increases but more and more slowly with the increase in steam injection intensity, increases first and then decreases with the increase in steam injection rate, increases first and then decreases with the increase in soak time, increases but more and more slowly with the increase in degree of superheat. Influence of steam injection intensity is obvious to recovery percentage, but influence of other factors like soak time, steam injection rate, degree of superheat is insignificant.


2014 ◽  
Vol 675-677 ◽  
pp. 1505-1511 ◽  
Author(s):  
Hong Qin Liu ◽  
Zai Hong Shi ◽  
Jing Zhu ◽  
Zhen Ma

The screen pipe completion is the predominated method for heavy oil horizontal well in Liaohe Oilfield, accounting for 83.4% of the total completions. General steam injection has been used for the horizontal wells, resulting in a better exploitation percentage in heel part but a poorer exploitation percentage beyond 1/3 of the distance from the tiptoe to heel in horizontal well. As the concentric dual-tube steam injection technique for horizontal well has just been developed in Liaohe Oilfield, the related supporting technique is not enough. In this paper, researchers consider achieving horizontal wells concentric dual-tube steam injection optimized design as main goal so that the physical model will be established, and also the calculation methods for pressure, the calculation models for quality, heat loss and tapered string parameters along the wellbore will be provided during the concentric dual-tube steam injection for horizontal wells.


2014 ◽  
Vol 694 ◽  
pp. 350-353
Author(s):  
Zhen Yu Sun ◽  
Ji Cheng Zhao

Liaohe oilfield is the biggest production base of the heavy oil in China. There are more than 800 horizontal wells with thermal recovery in the heavy oil reservoirs. Most of them adopt screen to complete the wells without packer outside of the casing, which results in packing off annulus space between screen and layer and only commingled steam or step steam can be injected inside the screen. Because of the areal and vertical anisotropy of the reservoirs, the horizontal sections are exploited unequally. According to the statistics, the horizontal wells with nonuniform exploitation accounts for 80 percent of all the horizontal wells with thermal recovery, and only 1/3 to 1/2 of the horizontal sections are comparatively well produced. The oil well productivity is seriously affected. So based on step steam injection inside the screen, we have developed the segregated completion and segregated steam injection technology applied to the horizontal wells with thermal recovery in heavy oil reservoirs. By means of the research on the segregated completion technology and development of high temperature ECP and casing thermal centralizer, which formed the corresponding technology applied in the horizontal wells with thermal recovery. Till now this technology has been applied in 8 wells, and average cyclic steam/oil ratio increased 0.1 plus, and the uniform development level of the horizontal section has been improved and the oilfield’s development effect has been advanced obviously.


Author(s):  
A.T. Zaripov ◽  
◽  
D.K. Shaikhutdinov ◽  
Ya.V. Zakharov ◽  
A.A. Bisenova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document