Co-Current Spontaneous Imbibition in Porous Media with the Dynamics of Viscous Coupling and Capillary Back Pressure

Author(s):  
Pål Østebø Andersen ◽  
Yangyang Qiao ◽  
Dag Chun Standnes ◽  
Steinar Evje
SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 158-177 ◽  
Author(s):  
Pål Østebø Andersen ◽  
Yangyang Qiao ◽  
Dag Chun Standnes ◽  
Steinar Evje

Summary This paper presents a numerical study of water displacing oil using combined cocurrent/countercurrent spontaneous imbibition (SI) of water displacing oil from a water-wet matrix block exposed to water on one side and oil on the other. Countercurrent flows can induce a stronger viscous coupling than during cocurrent flows, leading to deceleration of the phases. Even as water displaces oil cocurrently, the saturation gradient in the block induces countercurrent capillary diffusion. The extent of countercurrent flow may dominate the domain of the matrix block near the water-exposed surfaces while cocurrent imbibition may dominate the domain near the oil-exposed surfaces, implying that one unique effective relative permeability curve for each phase does not adequately represent the system. Because relative permeabilities are routinely measured cocurrently, it is an open question whether the imbibition rates in the reservoir (depending on a variety of flow regimes and parameters) will in fact be correctly predicted. We present a generalized model of two-phase flow dependent on momentum equations from mixture theory that can account dynamically for viscous coupling between the phases and the porous media because of fluid/rock interaction (friction) and fluid/fluid interaction (drag). These momentum equations effectively replace and generalize Darcy's law. The model is parameterized using experimental data from the literature. We consider a water-wet matrix block in one dimension that is exposed to oil on one side and water on the other side. This setup favors cocurrent SI. We also account for the fact that oil produced countercurrently into water must overcome the so-called capillary backpressure, which represents a resistance for oil to be produced as droplets. This parameter can thus influence the extent of countercurrent production and hence viscous coupling. This complex mixture of flow regimes implies that it is not straightforward to model the system by a single set of relative permeabilities, but rather relies on a generalized momentum-equation model that couples the two phases. In particular, directly applying cocurrently measured relative permeability curves gives significantly different predictions than the generalized model. It is seen that at high water/oil-mobility ratios, viscous coupling can lower the imbibition rate and shift the production from less countercurrent to more cocurrent compared with conventional modeling. Although the viscous-coupling effects are triggered by countercurrent flow, reducing or eliminating countercurrent production by means of the capillary backpressure does not eliminate the effects of viscous coupling that take place inside the core, which effectively lower the mobility of the system. It was further seen that viscous coupling can increase the remaining oil saturation in standard cocurrent-imbibition setups.


Author(s):  
Andreas G. Yiotis ◽  
John Psihogios ◽  
Michael E. Kainourgiakis ◽  
Aggelos Papaioannou ◽  
Athanassios K. Stubos

Author(s):  
Shabina Ashraf ◽  
Jyoti Phirani

Abstract Capillary impregnation of viscous fluids in porous media is useful in diagnostics, design of lab-on-chip devices and enhanced oil recovery. The impregnation of a wetting fluid in a homogeneous porous medium follows Washburn’s diffusive law. The diffusive dynamics predicts that, with the increase in permeability, the rate of spontaneous imbibition of a wetting fluid also increases. As most of the naturally occurring porous media are composed of hydrodynamically interacting layers having different properties, the impregnation in a heterogeneous porous medium is significantly different from a homogeneous porous medium. A Washburn like model has been developed in the past to predict the imbibition behavior in the layers for a hydrodynamically interacting three layered porous medium filled with a non-viscous resident phase. It was observed that the relative placement of the layers impacts the imbibition phenomena significantly. In this work, we develop a quasi one-dimensional lubrication approximation to predict the imbibition dynamics in a hydrodynamically interacting multi-layered porous medium. The generalized model shows that the arrangement of layers strongly affects the saturation of wetting phase in the porous medium, which is crucial for oil recovery and in microfluidic applications.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1092-1107 ◽  
Author(s):  
M.. Tagavifar ◽  
M.. Balhoff ◽  
K.. Mohanty ◽  
G. A. Pope

Summary Surfactants induce spontaneous imbibition of water into oil-wet porous media by wettability alteration and interfacial-tension (IFT) reduction. Although the dependence of imbibition on wettability alteration is well-understood, the role of IFT is not as clear. This is partly because, at low IFT values, most water/oil/amphiphile(s) mixtures form emulsions and/or microemulsions, suggesting that the imbibition is accompanied by a phase change, which has been neglected or incorrectly accounted for in previous studies. In this paper, spontaneous displacement of oil from oil-wet porous media by microemulsion-forming surfactants is investigated through simulations and the results are compared with existing experimental data for low-permeability cores with different aspect ratios and permeabilities. Microemulsion viscosity and oil contact angles, with and without surfactant, were measured to better initialize and constrain the simulation model. Results show that with such processes, the imbibition rate and the oil recovery scale differently with core dimensions. Specifically, the rate of imbibition is faster in cores with larger diameter and height, but the recovery factor is smaller when the core aspect ratio deviates considerably from unity. With regard to the mechanism of water uptake, our results suggest, for the first time, that (i) microemulsion formation (i.e., fluid/fluid interface phenomenon) is fast and favored over the wettability alteration (i.e., rock-surface phenomenon) in short times; (ii) a complete wettability transition from an oil-wet to a mixed microemulsion-wet and surfactant-wet state always occurs at ultralow IFT; (iii) wettability alteration causes a more uniform imbibition profile along the core but creates a more diffused imbibition front; and (iv) total emulsification is a strong assumption and fails to describe the dynamics and the scaling of imbibition. Wettability alteration affects the imbibition dynamics locally by changing the composition path, and at a distance by changing the flow behavior. Simulations predict that even though water is not initially present, it forms inside the core. The implications of these results for optimizing the design of low-IFT imbibition are discussed.


Sign in / Sign up

Export Citation Format

Share Document