Capillary Impregnation of Viscous Fluids in a Multi-Layered Porous Medium

Author(s):  
Shabina Ashraf ◽  
Jyoti Phirani

Abstract Capillary impregnation of viscous fluids in porous media is useful in diagnostics, design of lab-on-chip devices and enhanced oil recovery. The impregnation of a wetting fluid in a homogeneous porous medium follows Washburn’s diffusive law. The diffusive dynamics predicts that, with the increase in permeability, the rate of spontaneous imbibition of a wetting fluid also increases. As most of the naturally occurring porous media are composed of hydrodynamically interacting layers having different properties, the impregnation in a heterogeneous porous medium is significantly different from a homogeneous porous medium. A Washburn like model has been developed in the past to predict the imbibition behavior in the layers for a hydrodynamically interacting three layered porous medium filled with a non-viscous resident phase. It was observed that the relative placement of the layers impacts the imbibition phenomena significantly. In this work, we develop a quasi one-dimensional lubrication approximation to predict the imbibition dynamics in a hydrodynamically interacting multi-layered porous medium. The generalized model shows that the arrangement of layers strongly affects the saturation of wetting phase in the porous medium, which is crucial for oil recovery and in microfluidic applications.

10.29007/jq63 ◽  
2018 ◽  
Author(s):  
Mahendra A. Patel ◽  
Narendrasinh Desai

Spontaneous imbibition is the process in which the wetting phase is drawn into a porous medium by means of capillary force. Cocurrent and countercurrent spontaneous imbibitions are defined as wetting and non-wetting fluid flow in identical, and opposite directions respectively. The mathematical model is developed for cocurrent imbibition phenomenon in the inclined oil formatted homogeneous porous medium. An approximate analytical solution of the governing equation is derived by homotopy analysis method. The graphical and numerical solutions are discussed.


Author(s):  
Shabina Ashraf ◽  
Jyoti Phirani

Surface tension driven flow in which one fluid displaces another is of importance in microfluidic devices for diagnostics, lab on chip devices and flow in oil reservoirs. Spontaneous impregnation of a preferentially wetting phase displacing an existing non-wetting phase in a homogeneous porous medium is known to follow diffusive dynamics. However, in a heterogeneous porous medium the hydrodynamic interaction between the narrow and the wide pores significantly alters the impregnation behavior. Previous studies have shown that the imbibing fluid interface leads in the narrow pores contrary to the predictions from the diffusive dynamics of homogeneous porous medium. This is due to the higher suction pressure in the narrow pores which draw fluid from the wide pores. The effect of fluid properties and relative flow properties of the pores with respect to other pores on the non-wetting fluid displacement in the heterogeneous porous medium is still unknown. In the current work, we develop a quasi one-dimensional, lubrication approximation model, which predicts the spontaneous imbibition in a heterogeneous porous medium. We explore all the possible relative fluid properties and flow properties of the layers in the heterogeneous porous medium and show that our model is able to predict the flow behavior in all the cases. We also present the results of the spontaneous imbibition experiments, which agree with our model. The experiments show that the two phase interface progresses faster in the narrow pores as predicted by the one-dimensional model. The result is important for predicting and controlling the flow behavior in a heterogeneous porous medium.


2019 ◽  
Vol 89 ◽  
pp. 01005 ◽  
Author(s):  
Bergit Brattekås ◽  
Tore L. Føyen ◽  
Trond Vabø ◽  
Håkon Haugland ◽  
Simon I. Reite ◽  
...  

This paper describes the development of a consistent model system to measure spontaneous imbibition and determine saturation functions in unconsolidated porous media. Sand grains or glass beads were packed in up to 0.5 m long, transparent glass tubes with optical access to local saturation development during spontaneous imbibition processes. The Two Ends Open-Free spontaneous imbibition (TEOFSI) boundary condition was used, where one end face is exposed to the wetting fluid and the other end to the non-wetting fluid. Dynamic measurement of the advancing displacement front and volumetric production from each open end-face enabled estimation of capillary pressure and relative permeability for the system. A range of wetting- and non-wetting phase viscosities and viscosity ratios was used during spontaneous imbibition in unconsolidated sand or glass packs. Wetting phase (water) viscosity was increased using water soluble glycerol or polymers. Air or mineral oil of varying composition provided a wide range of non-wetting phase viscosities. High permeable systems are extremely sensitive to laboratory properties, which may dominate the viscous resistance and determine flow behaviour. Systematic discrepancies observed in early testing indicated that end effects were present, even in long systems, in the filters at each end of the glass tube to maintain the grains or beads in place. Different filters were tested (no filter, glass, paper and micro-porous discs) to determine the impact of the filter on spontaneous imbibition. In addition to slower oil recovery than anticipated, developmentof a non-uniform displacement front was observed, demonstrating the large influence from minute heterogeneities within the packs, and at the end faces. A standard sand grain packing procedure, using a custom-designed packing device, was therefore developed to ensure homogeneous properties throughout theporous media, and limited the spread in porosity and permeability values. Homogeneous sand packs with reproducible properties are necessary, to systematically investigate flow parameters and changes in wettability in unconsolidated porous media.


Author(s):  
Eslam Ezzatneshan ◽  
Reza Goharimehr

In the present study, a pore-scale multicomponent lattice Boltzmann method (LBM) is employed for the investigation of the immiscible-phase fluid displacement in a homogeneous porous medium. The viscous fingering and the stable displacement regimes of the invading fluid in the medium are quantified which is beneficial for predicting flow patterns in pore-scale structures, where an experimental study is extremely difficult. Herein, the Shan-Chen (S-C) model is incorporated with an appropriate collision model for computing the interparticle interaction between the immiscible fluids and the interfacial dynamics. Firstly, the computational technique is validated by a comparison of the present results obtained for different benchmark flow problems with those reported in the literature. Then, the penetration of an invading fluid into the porous medium is studied at different flow conditions. The effect of the capillary number (Ca), dynamic viscosity ratio (M), and the surface wettability defined by the contact angle (θ) are investigated on the flow regimes and characteristics. The obtained results show that for M<1, the viscous fingering regime appears by driving the invading fluid through the pore structures due to the viscous force and capillary force. However, by increasing the dynamic viscosity ratio and the capillary number, the invading fluid penetrates even in smaller pores and the stable displacement regime occurs. By the increment of the capillary number, the pressure difference between the two sides of the porous medium increases, so that the pressure drop Δp along with the domain at θ=40∘ is more than that of computed for θ=80∘. The present study shows that the value of wetting fluid saturation Sw at θ=40∘ is larger than its value computed with θ=80∘ that is due to the more tendency of the hydrophilic medium to absorb the wetting fluid at θ=40∘. Also, it is found that the magnitude of Sw computed for both the contact angles is decreased by the increment of the viscosity ratio from Log(M)=−1 to 1. The present study demonstrates that the S-C LBM is an efficient and accurate computational method to quantitatively estimate the flow characteristics and interfacial dynamics through the porous medium.


1961 ◽  
Vol 1 (02) ◽  
pp. 61-70 ◽  
Author(s):  
J. Naar ◽  
J.H. Henderson

Introduction The displacement of a wetting fluid from a porous medium by a non-wetting fluid (drainage) is now reasonably well understood. A complete explanation has yet to be found for the analogous case of a wetting fluid being spontaneously imbibed and the non-wetting phase displaced (imbibition). During the displacement of oil or gas by water in a water-wet sand, the porous medium ordinarily imbibes water. The amount of oil recovered, the cost of recovery and the production history seem then to be controlled mainly by pore geometry. The influence of pore geometry is reflected in drainage and imbibition capillary-pressure curves and relative permeability curves. Relative permeability curves for a particular consolidated sand show that at any given saturation the permeability to oil during imbibition is smaller than during drainage. Low imbibition permeabilities suggest that the non-wetting phase, oil or gas, is gradually trapped by the advancing water. This paper describes a mathematical image (model) of consolidated porous rock based on the concept of the trapping of the non-wetting phase during the imbibition process. The following items have been derived from the model.A direct relation between the relative permeability characteristics during imbibition and those observed during drainage.A theoretical limit for the fractional amount of oil or gas recoverable by imbibition.An expression for the resistivity index which can be used in connection with the formula for wetting-phase relative permeability to check the consistency of the model.The limits of flow performance for a given rock dictated by complete wetting by either oil or water.The factors controlling oil recovery by imbibition in the presence of free gas. The complexity of a porous medium is such that drastic simplifications must be introduced to obtain a model amenable to mathematical treatment. Many parameters have been introduced by others in "progressing" from the parallel-capillary model to the randomly interconnected capillary models independently proposed by Wyllie and Gardner and Marshall. To these a further complication must be added since an imbibition model must trap part of the non-wetting phase during imbibition of the wetting phase. Like so many of the previously introduced complications, this fluid-block was introduced to make the model performance fit the observed imbibition flow behavior.


Author(s):  
Calvin Lumban Gaol ◽  
Leonhard Ganzer ◽  
Soujatya Mukherjee ◽  
Hakan Alkan

The presence of microorganisms could alter the porous medium permeability, which is vital for several applications, including aquifer storage and recovery (ASR), enhanced oil recovery (EOR) and underground hydrogen storage.


1970 ◽  
Vol 10 (04) ◽  
pp. 328-336 ◽  
Author(s):  
S. H. Raza

Abstract A laboratory study was made of the variables which affect the generation, propagation, quality und nature of foam produced inside a porous medium. It is shown that foam can be generated and propagated in porous media representative of reservoir rocks at pressure levels ranging from atmospheric to 1,000 psig, and under pressure differentials ranging from 1.0 to 50 psi/ft. The quality of foam depends on the type of foaming agent, the concentration of foaming solution, the physical properties of the porous medium, the pressure level, and the composition and saturation of fluids present. The nature of foam depends upon the type of foaming agent and its concentration in the foaming solution. The study shows that the flow behavior of foam in a porous medium is a complex one which cannot he correctly described in terms of the high apparent viscosity of foam. Also, the concept of relative permeability is not applicable to the flow of foam due to the associative nature of its components. On the basis of the discussed characteristics of foam, several applications of foam are suggested in oil recovery processes.


1984 ◽  
Vol 24 (04) ◽  
pp. 399-407 ◽  
Author(s):  
Mohammad Reza Fassihi ◽  
William E. Brigham ◽  
Henry J. Ramey

Abstract Continuous analysis of produced gases from a small packed bed reactor, at both isothermal and linearly increasing temperatures, has shown that combustion of crude oil in porous media follows several consecutive reactions. Molar carbon dioxide/carbon monoxide (CO2/CO) and apparent hydrogen/carbon (H/C) ratios were used to observe the transition between these reactions at different temperature levels. A new kinetic model for oxidation of crude oil in porous media is presented in Part 2 of this paper (Page 408) Introduction The quantity of fuel consumed and the reaction rate within the burning zone have been studied intensively for two reasons. First, the maximum oil recovery is the difference of the original oil in place (OOIP) at the start of the operation and the oil consumed as fuel. Second, one of the most important factors in the economic evaluation of any in-situ combustion project is the cost of air compression. Excessive fuel deposition causes a slow rate of advance of the burning front and large air compression costs. However, if the fuel concentration is too low, the heat of combustion will not be sufficient to raise the temperature of the rock and the contained fluids to a level of self-sustained combustion. This may lead to combustion failure. Thus, it is necessary to understand the reactions occurring at different temperatures as the combustion front moves in the porous medium. The most crucial and yet least understood zone of insitu combustion oil recovery is the burning front, where temperature reaches a maximum value. The velocity of the burning front is controlled by the chemical reactions involved. However, since crude oil is a mixture of hydrocarbons, it is necessary to consider a global description of the reaction mechanism. Reaction Mechanism The reaction between fuel and oxygen in a forward combustion process is a heterogeneous flow reaction. Injected oxidant gas must pass through the burning zone to make the burning front move. Within the burning zone, four known transport processes occur:oxygen diffuses from the bulk gas stream to the fuel interface; then, perhaps,the oxygen absorbs and reacts with the fuel;then combustion products desorb; andproducts finally transfer into the bulk gas stream. If any of these steps is inherently much slower than the remaining ones, the overall rate will be controlled by that step. Also, the rate of each series of steps must be equal in the steadystate condition. However, there are no useful correlations for computing absorption and desorption of oxygen in a porous medium. Consequently, consideration of these phenomena becomes extremely difficult for even simple reactions. Theoretical expressions for postulated mechanisms often contain 10 or more arbitrary constants. Because of the large number of arbitrary constants, sever-al expressions developed for widely different mechanisms often will match experimental data equally well. In general, the combustion rate, Rc, of crude oil in a porous medium can be described as dCm m nRc = - ------ = kpo2 Cm,............................(1)dt whereCm = instantaneous concentration of fuel, k = rate constant, Po2 = partial pressure of oxygen, andm, n = reaction orders. The reaction constant, k, is often a function of temperature, T, as expressed by k=w exp(– E/RT).......................................(2) where E is the activation energy, w is the Arrhenius constant, and R is the universal gas constant. For heterogeneous reactions, the constant w is a function of the surface area of the rock. Early studies of crude oil oxidation in a porous medium were mostly qualitative. Differential thermal analysis (DTA) was performed on samples of crude oil, and the resulting thermograms represented the thermal history of each sample as it was heated at a uniform rate (usually 18 degrees F/min [10 degrees C/min]) in a constant air flow (usually 277 mL/min [277 cm3/min]). These thermograms indicated the presence of a number of exothermic reactions. Another method of analysis is thermogravimetric analysis (TGA). Here, a sample of crude oil is weighed continuously as it is heated at a constant rate. The resulting curve of weight change vs. time or temperature indicates the occurrence of at least two reactions at different temperatures. SPEJ P. 399^


1971 ◽  
Vol 11 (04) ◽  
pp. 342-350 ◽  
Author(s):  
Abbas A. Alikhan ◽  
S.M. Farouq Ali

Abstract An experimented study was conducted of the recovery of oil from as porous medium overlain and underlain by heat-conducting formations and containing a residual oil or connate water saturation by injection of a small slug of a light hydrocarbon followed by 1/2 PV of hot water driven by a conventional waterflood. The fluid production histories and the temperature distribution obtained showed that a light hydrocarbon sag injected ahead of a hot water slug leads to a considerable increase in oil recovery. The net oil recovery was found to depend on the original oil viscosity, hydrocarbon slug viscosity, and the injection rate. The process was more effective in a previously waterflooded core rather than in one containing connate water. The over-all ratio of the total hydrocarbon produced to the hydrocarbon injected ranged from 1.10 to 3.96, the variation corresponding to the viscosity of the hydrocarbon slug employed. Introduction Numerous methods have been proposed for recovering oil from previously waterflooded porous media. Some methods involve the application of heat in one form or another, while others utilize miscible displacement processes. The proposed method involves a combination of the two, employing a small hydrocarbon slug followed by a slug of hot water, which is driven by a conventional waterflood. An attempt was made to investigate the conditions (residual oil saturation, viscosity, etc.) under which such a method would yield a sizable oil recovery. Use of a solvent dug followed by at heat-carrying agent was earlier considered by Pirela and Farouq Ali. The process was designed to take advantage of the improved ternary-phase equilibrium behavior at elevated temperatures in the alcohol slug process. The experimental runs were conducted under isothermal conditions. In another study, Avendano found that injection of a light crude oil into a core containing a highly viscous oil prior to steam injection led to a large improvement in oil recovery. A number of investigators have studied the effect of water-driven hydrocarbon slugs on oil recovery from waterflooded porous media. Csaszar and Holm employed slugs of propane in waterflood cores containing oils with viscosities ranging from 3 to 9 cp. The volume of the oil recovered was 2 to 3 times the propane injected, the efficiency of the process depending on the amount of mobile oil process depending on the amount of mobile oil near the point of injection and the viscosity of the in-place oil. Wiesenthal used gasoline as an intermediate slug when waterflooding cores containing oils having viscosities of 1.28 to 324 cp. He found that the process was effective in waterflooded porous media, especially in the case of viscous oils. Fitzgerald conducted similar experiments using gasoline and arrived at more or less the same conclusions. The process under consideration involves a combination of miscible displacement and hot waterflooding, both of which have been amply discussed in the literature. A comprehensive survey of miscible displacement has been presented by Perkins and Johnston, while a description of hot Perkins and Johnston, while a description of hot waterflooding may be found elsewhere. In the following, only the most important features of the two processes operating in the combination process will be considered. EXPERIMENTAL APPARATUS AND PROCEDURE PROCEDURE APPARATUS The porous medium used in the present investigation consisted of a steel cube 4 ft in length with a rectangular cross-section and inside dimensions of 1.5 × 3.5 in., packed with 130-mesh glass beads. The resulting core had a porosity of 39.95 percent (PV = 1,690 cc) and permeability of 7 darcies. The core was provided with 15 connections on one side for thermocouples and 5 connections on the other side for transducers. SPEJ P. 342


Sign in / Sign up

Export Citation Format

Share Document