Predicting Horizontal Well Production Performance Using Type Curves

Author(s):  
K. Aminian ◽  
S. Ameri

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Qi-guo Liu ◽  
Wei-hong Wang ◽  
Hua Liu ◽  
Guangdong Zhang ◽  
Long-xin Li ◽  
...  

Shale gas reservoir has been aggressively exploited around the world, which has complex pore structure with multiple transport mechanisms according to the reservoir characteristics. In this paper, a new comprehensive mathematical model is established to analyze the production performance of multiple fractured horizontal well (MFHW) in box-shaped shale gas reservoir considering multiscaled flow mechanisms (ad/desorption and Fick diffusion). In the model, the adsorbed gas is assumed not directly diffused into the natural macrofractures but into the macropores of matrix first and then flows into the natural fractures. The ad/desorption phenomenon of shale gas on the matrix particles is described by a combination of the Langmuir’s isothermal adsorption equation, continuity equation, gas state equation, and the motion equation in matrix system. On the basis of the Green’s function theory, the point source solution is derived under the assumption that gas flow from macropores into natural fractures follows transient interporosity and absorbed gas diffused into macropores from nanopores follows unsteady-state diffusion. The production rate expression of a MFHW producing at constant bottomhole pressure is obtained by using Duhamel’s principle. Moreover, the curves of well production rate and cumulative production vs. time are plotted by Stehfest numerical inversion algorithm and also the effects of influential factors on well production performance are analyzed. The results derived in this paper have significance to the guidance of shale gas reservoir development.



1992 ◽  
Vol 57 (6) ◽  
pp. 538-546
Author(s):  
Shigeyuki MAEZUMI ◽  
Minoru YOSHIZAWA ◽  
Arata NAKAMURA ◽  
Masaru IHARA




Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jiazheng Qin ◽  
Shiqing Cheng ◽  
Youwei He ◽  
Dingyi Li ◽  
Jia Zhang ◽  
...  

The widely used application of horizontal well makes it significant to effectively evaluate rate performance of horizontal well in oil and gas reservoir. However, most models in previous work only focus on rate decline analysis (RDA) of horizontal well with single section (HWSS); they hardly address the problem that production rate distributes nonuniformly along horizontal wellbore in analyzing rate transient behaviors. However, only some horizontal segments contribute to the total production rates, and the production of each section along horizontal wellbore is not the same in fact, which may be caused by reservoir heterogeneity, selective completion, and nonuniform formation damage along horizontal wellbore. Therefore, the effect of these phenomena on rate decline characteristics cannot be ignored. The aim of this paper is to propose an analytical model to investigate transient rate response of a horizontal well with multiple sections (HWMS). The compound type curves, including the normalized production curve, the normalized production integral curve, and the production integral derivative curve, are developed to distinguish the different cases. The influences of some sensitive parameters on decline curves are further discussed. Results show obvious differences on the decline curves between the HWMS and HWSS. The parameters are sensitive on decline curves, which explore the feasible application on production performance evaluation and parameters interpretation through history matching the production data with the compound type curves in this paper.



2015 ◽  
Vol 18 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Cong Lu ◽  
Ren-Shi Nie ◽  
Jian-Chun Guo ◽  
Dan-Ling Wang


2021 ◽  
Vol 10 ◽  
pp. 17-32
Author(s):  
Guido Fava ◽  
Việt Anh Đinh

The most advanced technique to evaluate different solutions proposed for a field development plan consists of building a numerical model to simulate the production performance of each alternative. Fields covering hundreds of square kilometres frequently require a large number of wells. There are studies and software concerning optimal planning of vertical wells for the development of a field. However, only few studies cover planning of a large number of horizontal wells seeking full population on a regular pattern. One of the criteria for horizontal well planning is selecting the well positions that have the best reservoir properties and certain standoffs from oil/water contact. The wells are then ranked according to their performances. Other criteria include the geometry and spacing of the wells. Placing hundreds of well individually according to these criteria is highly time consuming and can become impossible under time restraints. A method for planning a large number of horizontal wells in a regular pattern in a simulation model significantly reduces the time required for a reservoir production forecast using simulation software. The proposed method is implemented by a computer script and takes into account not only the aforementioned criteria, but also new well requirements concerning existing wells, development area boundaries, and reservoir geological structure features. Some of the conclusions drawn from a study on this method are (1) the new method saves a significant amount of working hours and avoids human errors, especially when many development scenarios need to be considered; (2) a large reservoir with hundreds of wells may have infinite possible solutions, and this approach has the aim of giving the most significant one; and (3) a horizontal well planning module would be a useful tool for commercial simulation software to ease engineers' tasks.





2020 ◽  
Author(s):  
Ryvo Octaviano ◽  
Erik Hornstra ◽  
Jonah Poort ◽  
Pejman Shoeibi Omrani ◽  
Ruud van der Linden ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document