Hydraulic Fracturing In Unconventional Reservoirs: The Impact of Layering and Permeable Frictional Interfaces

2019 ◽  
Author(s):  
Gao Qian ◽  
Ghassemi Ahmad
2021 ◽  
Vol 11 (2) ◽  
pp. 857-873
Author(s):  
A. A. Elgibaly ◽  
A. M. Salem ◽  
Y. A. Soliman

AbstractFoamed and energized fluids fracturing has been used in both conventional and unconventional reservoirs, as they reduce the amount of water used and hence minimize deleterious impact on water-sensitive formations. They also aid in the flow back after treatment in reservoirs where drawdown is limited. In this paper, the most important foam properties are presented, in addition, when to use energized fluids fracturing and how to choose the best energizing component with the best quality. The impact of N2-energized fluids fracturing (NEF) on wells that were previously fractured using conventional fracturing fluids is also presented. In addition, a comparison between the results of N2-energized fluids fractured and conventional fluid fractured wells is presented. The effect of using 20 to 50% (NEF) on production through surface well testing and live production data showed excellent and sustainable production rates. An economical study is presented through comparing the total capital cost of both NEF and conventional fluids fracturing, in addition to the hydrocarbon recovery of wells after both types. Data considered in this work represent about 40 wells fractured using NEF in the Egyptian Western Desert.


2021 ◽  
Vol 5 (4) ◽  
pp. 1-10
Author(s):  
Bou-Hamdan KF

The petroleum industry faces a lot of challenges in producing hydrocarbons. These challenges became significant with the discovery of unconventional reservoirs. This called for new advanced technologies to be developed. Extended Reach Drilling (ERD) and Hydraulic Fracturing (HF) are two methods that were successfully implemented in different wells around the world. ERD has been used in numerous drilling operations where the reservoir is surrounded by troublesome formations, hence sidetracking is necessary. Hydraulic fracturing is used in the development of many unconventional wells, including shale gas reservoirs. However, these methods still face a lot of challenges during implementation, which can affect the success of the drilling and well completion design. This article discusses the main design considerations for implementing ERD and Hydraulic fracturing in an unconventional reservoir. It also covers the main challenges that should be accounted for while preparing the drilling and well stimulation design to improve the production efficiency. It includes the impact of stress shadows, frac hits, well spacing, casing design, and other factors on the overall success of the process.


Author(s):  
Saeed Delara ◽  
Kendra MacKay

Horizontal directional drilling (HDD) has become the preferred method for trenchless pipeline installations. Drilling pressures must be limited and a “no-drill zone” determined to avoid exceeding the strength of surrounding soil and rock. The currently accepted industry method of calculating hydraulic fracturing limiting pressure with application of an arbitrary safety factor contains several assumptions that are often not applicable to specific ground conditions. There is also no standard procedure for safety factor determination, resulting in detrimental impacts on drilling operations. This paper provides an analysis of the standard methods and proposes two alternative analytical models to more accurately determine the hydraulic fracture point and acceptable drilling pressure. These alternative methods provide greater understanding of the interaction between the drilling pressures and the surrounding ground strength properties. This allows for more accurate determination of horizontal directional drilling limitations. A comparison is presented to determine the differences in characteristics and assumptions for each model. The impact of specific soil properties and factors is investigated by means of a sensitivity analysis to determine the most critical soil information for each model.


2021 ◽  
Author(s):  
Hamid Pourpak ◽  
Samuel Taubert ◽  
Marios Theodorakopoulos ◽  
Arnaud Lefebvre-Prudencio ◽  
Chay Pointer ◽  
...  

Abstract The Diyab play is an emerging unconventional play in the Middle East. Up to date, reservoir characterization assessments have proved adequate productivity of the play in the United Arab Emirates (UAE). In this paper, an advanced simulation and modeling workflow is presented, which was applied on selected wells located on an appraisal area, by integrating geological, geomechanical, and hydraulic fracturing data. Results will be used to optimize future well landing points, well spacing and completion designs, allowing to enhance the Stimulated Rock Volume (SRV) and its consequent production. A 3D static model was built, by propagating across the appraisal area, all subsurface static properties from core-calibrated petrophysical and geomechanical logs which originate from vertical pilot wells. In addition, a Discrete Fracture Network (DFN) derived from numerous image logs was imported in the model. Afterwards, completion data from one multi-stage hydraulically fracked horizontal well was integrated into the sector model. Simulations of hydraulic fracturing were performed and the sector model was calibrated to the real hydraulic fracturing data. Different scenarios for the fracture height were tested considering uncertainties related to the fracture barriers. This has allowed for a better understanding of the fracture propagation and SRV creation in the reservoir at the main target. In the last step, production resulting from the SRV was simulated and calibrated to the field data. In the end, the calibrated parameters were applied to the newly drilled nearby horizontal wells in the same area, while they were hydraulically fractured with different completion designs and the simulated SRVs of the new wells were then compared with the one calculated on the previous well. Applying a fully-integrated geology, geomechanics, completion and production workflow has helped us to understand the impact of geology, natural fractures, rock mechanical properties and stress regimes in the SRV geometry for the unconventional Diyab play. This work also highlights the importance of data acquisition, reservoir characterization and of SRV simulation calibration processes. This fully integrated workflow will allow for an optimized completion strategy, well landing and spacing for the future horizontal wells. A fully multi-disciplinary simulation workflow was applied to the Diyab unconventional play in onshore UAE. This workflow illustrated the most important parameters impacting the SRV creation and production in the Diyab formation for he studied area. Multiple simulation scenarios and calibration runs showed how sensitive the SRV can be to different parameters and how well placement and fracture jobs can be possibly improved to enhance the SRV creation and ultimately the production performance.


2018 ◽  
Vol 139 ◽  
pp. 62-76 ◽  
Author(s):  
Priscille Etoughe ◽  
Prashanth Siddhamshetty ◽  
Kaiyu Cao ◽  
Rajib Mukherjee ◽  
Joseph Sang-II Kwon

2021 ◽  
Author(s):  
Hajar Ali Abdulla Al Shehhi ◽  
Bondan Bernadi ◽  
Alia Belal Zuwaid Belal Al Shamsi ◽  
Shamma Jasem Al Hammadi ◽  
Fatima Omar Alawadhi ◽  
...  

Abstract Reservoir X is a marginal tight gas condensate reservoir located in Abu Dhabi with permeability of less than 0.05 mD. The field was conventionally developed with a few single horizontal wells, though sharp production decline was observed due to rapid pressure depletion. This study investigates the impact of converting the existing single horizontal wells into single long horizontal, dual laterals, triple laterals, fishbone design and hydraulic fracturing in improving well productivity. The existing wells design modifications were planned using a near reservoir simulator. The study evaluated the impact of length, trajectory, number of laterals and perforation intervals. For Single, dual, and triple lateral wells, additional simulation study with hydraulic fracturing was carried out. To evaluate and obtain effective comparisons, sector models with LGR was built to improve the simulation accuracy in areas near the wellbore. The study conducted a detailed investigation into the impact of various well designs on the well productivity. It was observed that maximizing the reservoir contact and targeting areas with high gas saturation led to significant increase in the well productivity. The simulation results revealed that longer laterals led to higher gas production rates. Dual lateral wells showed improved productivity when compared to single lateral wells. This incremental gain in the production was attributed to increased contact with the reservoir. The triple lateral well design yielded higher productivity compared to single and dual lateral wells. Hydraulic fracturing for single, dual, and triple lateral wells showed significant improvement in the gas production rates and reduced condensate banking near the wellbore. A detailed investigation into the fishbone design was carried out, this involved running sensitivity runs by varying the number of branches. Fishbone design showed considerable increment in production when compared to other well designs This paper demonstrates that increasing the reservoir contact and targeting specific areas of the reservoir with high gas saturation can lead to significant increase in the well productivity. The study also reveals that having longer and multiple laterals in the well leads to higher production rates. Hydraulic fracturing led to higher production gains. Fishbone well design with its multiple branches showed the most production again when compared to other well designs.


2015 ◽  
Author(s):  
R.N.. N. Naidu ◽  
E.A.. A. Guevara ◽  
A.J.. J. Twynam ◽  
J.. Rueda ◽  
W.. Dawson ◽  
...  

Abstract Hydraulic fracturing is a commonly used completion approach for extracting hydrocarbon resources from formations, particularly in those formations of very low permeability. As part of this process the use of Diagnostic Fracture Injection Tests (DFIT) can provide valuable information. When the measured pressures in such tests are outside the expected range for a given formation, a number of possibilities and questions will arise. Such considerations may include: What caused such inflated pressures? What is the in-situ stress state? Was there a mechanical or operational problem? Was the test procedure or the test equipment at fault? What else can explain the abnormal behaviour? While there may not be simple answers to all of these questions, such an experience can lead to a technically inaccurate conclusion based on inadequate analysis. A recently completed project faced just such a challenge, initially resulting in poor hydraulic fracturing efficiency and a requirement to understand the root causes. In support of this, a thorough analysis involving a multi-disciplinary review team from several technical areas, including petrophysics, rock/geo-mechanics, fluids testing/engineering, completions engineering, hydraulic fracture design and petroleum engineering, was undertaken. This paper describes the evolution of this study, the work performed, the results and conclusions from the analysis. The key factors involved in planning a successful DFIT are highlighted with a general template and a work process for future testing provided. The importance of appreciating the impact of the drilling and completion fluids composition, their properties and their compatibility with the formation fluids are addressed. The overall process and technical approach from this case study in tight gas fields, will have applicability across similar fields and the lessons learned could help unlock those reserves that are initially deemed technically or even commercially unattractive due to abnormal or unexpected behaviour measured during a DFIT operation.


Sign in / Sign up

Export Citation Format

Share Document