A Comparison Between Capillary Pressure Data and Saturation Exponent Obtained at Ambient Conditions and at Reservoir Conditions

1992 ◽  
Vol 7 (01) ◽  
pp. 34-40 ◽  
Author(s):  
Erik Sondena ◽  
Fred Brattell ◽  
Kristofer Kolltvelt ◽  
Hans P. Normann
2021 ◽  
Author(s):  
Abubakar Isah ◽  
Abdulrauf Rasheed Adebayo ◽  
Mohamed Mahmoud ◽  
Lamidi O. Babalola ◽  
Ammar El-Husseiny

Abstract Capillary pressure (Pc) and electrical resistivity index (RI) curves are used in many reservoir engineering applications. Drainage capillary pressure curve represents a scenario where a non-wetting phase displaces a wetting phase such as (i) during gas injection (ii) gas storage in reservoirs (e.g. aquifer or depleted hydrocarbon reservoirs). The gas used for injection is typically natural gas, N2, or CO2. Gas storage principally used to meet requirement variations, and water injection into oil-wet reservoirs are drainage processes. Resistivity index (RI) curve which is used to evaluate the potential of oil recovery from a reservoir, is also an important tool used in log calibration and reservoir fluid typing. The pore drainage mechanism in a multimodal pore system is important for effective recovery of hydrocarbon reserves; enhance oil recovery (EOR) planning and underground gas storage. The understanding of pore structure and drainage mechanism within a multimodal pore system during petrophysical analysis is of paramount importance to reservoir engineers. Therefore, it becomes inherent to study and establish a way to relate these special core analyses laboratory (SCAL) methods with quick measurements such as the nuclear magnetic resonance (NMR) to reduce the time requirement for analysis. This research employed the use of nuclear magnetic resonance (NMR) to estimate saturation exponent (n) of rocks using nitrogen as the displacing fluid. Different rock types were used in this study that cover carbonates, sandstones, and dolomites. We developed an analytical workflow to separate the capillary pressure curve into capillary pressure curve for macropores and a capillary pressure curve for the micropores, and then used these pore scale Pc curves to estimate an NMR - capillary pressure - based electrical resistivity index - saturation (NMR-RI-Sw) curve for the rocks. We predicted the saturation exponent (n) for the rock samples from the NMR-RI-Sw curve. The NMR-based saturation exponent estimation method requires the transverse (T2) relaxation distribution of the rock - fluid system at various saturations. To verify the reliability of the new workflow, we performed porous plate capillary pressure and electrical resistivity measurements on the rock samples. The reliability of the results for the resistivity index curve and the saturation exponent was verified using the experimental data obtained from the SCAL method. The pore scale Pc curve was used to ascertain the drainage pattern and fluid contribution of the different pore subsystems. For bimodal rock system, the drainage mechanism can be in series, in parallel, or in series - parallel depending on the rock pore structure.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3385 ◽  
Author(s):  
Abdulrauf R. Adebayo ◽  
Abubakar Isah ◽  
Mohamed Mahmoud ◽  
Dhafer Al-Shehri

Laboratory measurements of capillary pressure (Pc) and the electrical resistivity index (RI) of reservoir rocks are used to calibrate well logging tools and to determine reservoir fluid distribution. Significant studies on the methods and factors affecting these measurements in rocks containing oil, gas, and water are adequately reported in the literature. However, with the advent of chemical enhanced oil recovery (EOR) methods, surfactants are mixed with injection fluids to generate foam to enhance the gas injection process. Foam is a complex and non-Newtonian fluid whose behavior in porous media is different from conventional reservoir fluids. As a result, the effect of foam on Pc and the reliability of using known rock models such as the Archie equation to fit experimental resistivity data in rocks containing foam are yet to be ascertained. In this study, we investigated the effect of foam on the behavior of both Pc and RI curves in sandstone and carbonate rocks using both porous plate and two-pole resistivity methods at ambient temperature. Our results consistently showed that for a given water saturation (Sw), the RI of a rock increases in the presence of foam than without foam. We found that, below a critical Sw, the resistivity of a rock containing foam continues to rise rapidly. We argue, based on knowledge of foam behavior in porous media, that this critical Sw represents the regime where the foam texture begins to become finer, and it is dependent on the properties of the rock and the foam. Nonetheless, the Archie model fits the experimental data of the rocks but with resulting saturation exponents that are higher than conventional gas–water rock systems. The degree of variation in the saturation exponents between the two fluid systems also depends on the rock and fluid properties. A theory is presented to explain this phenomenon. We also found that foam affects the saturation exponent in a similar way as oil-wet rocks in the sense that they decrease the cross-sectional area of water available in the pores for current flow. Foam appears to have competing and opposite effects caused by the presence of clay, micropores, and conducting minerals, which tend to lower the saturation exponent at low Sw. Finally, the Pc curve is consistently lower in foam than without foam for the same Sw.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Dong Ma ◽  
Changwei Liu ◽  
Changhui Cheng

Relative permeability as an important petrophysical parameter is often measured directly in the laboratory or obtained indirectly from the capillary pressure data. However, the literature on relationship between relative permeability and resistivity is lacking. To this end, a new model of inferring two-phase relative permeability from resistivity index data was derived on the basis of Poiseuille's law and Darcy's law. The wetting phase tortuosity ratio was included in the proposed model. The relative permeabilities computed from the capillary pressure data, as well as the experimental data measured in gas–water and oil–water flow condition, were compared with the proposed model. Both results demonstrated that the two-phase permeability obtained by proposed model were generally in good agreement with the data computed from capillary pressure and measured in the laboratory. The comparison also showed that our model was much better than Li model at matching the relative permeability data.


Sign in / Sign up

Export Citation Format

Share Document