Effect of Silica Nanoparticles on the Oil Recovery During Alternating Injection with Low Salinity Water and Surfactant into Carbonate Reservoirs

2020 ◽  
Author(s):  
Saheed Olawale Olayiwola ◽  
Morteza Dejam
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ji Ho Lee ◽  
Kun Sang Lee

Carbonated water injection (CWI) induces oil swelling and viscosity reduction. Another advantage of this technique is that CO2 can be stored via solubility trapping. The CO2 solubility of brine is a key factor that determines the extent of these effects. The solubility is sensitive to pressure, temperature, and salinity. The salting-out phenomenon makes low saline brine a favorable condition for solubilizing CO2 into brine, thus enabling the brine to deliver more CO2 into reservoirs. In addition, low saline water injection (LSWI) can modify wettability and enhance oil recovery in carbonate reservoirs. The high CO2 solubility potential and wettability modification effect motivate the deployment of hybrid carbonated low salinity water injection (CLSWI). Reliable evaluation should consider geochemical reactions, which determine CO2 solubility and wettability modification, in brine/oil/rock systems. In this study, CLSWI was modeled with geochemical reactions, and oil production and CO2 storage were evaluated. In core and pilot systems, CLSWI increased oil recovery by up to 9% and 15%, respectively, and CO2 storage until oil recovery by up to 24% and 45%, respectively, compared to CWI. The CLSWI also improved injectivity by up to 31% in a pilot system. This study demonstrates that CLSWI is a promising water-based hybrid EOR (enhanced oil recovery).


SPE Journal ◽  
2015 ◽  
Vol 20 (03) ◽  
pp. 483-495 ◽  
Author(s):  
M. A. Mahmoud ◽  
K. Z. Abdelgawad

Summary Recently low-salinity waterflooding was introduced as an effective enhanced-oil-recovery (EOR) method in sandstone and carbonate reservoirs. The recovery mechanisms that use low-salinity-water injection are still debatable. The suggested possible mechanisms are: wettability alteration, interfacial-tension (IFT) reduction, multi-ion exchange, and rock dissolution. In this paper, we introduce a new chemical EOR method for sandstone and carbonate reservoirs that will give better recovery than the low-salinity-water injection without treating or diluting seawater. In this study, we introduce a new chemical EOR method that uses chelating agents such as ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), and diethylenetriaminepentaacetic acid (DTPA) at high pH values. This is the first time for use of chelating agents as standalone EOR fluids. Coreflood experiments, interfacial and surface tensions, and zeta-potential measurements are performed with DTPA, EDTA, and HEDTA chelating agents. The chelating-agent concentrations used in the study were prepared by diluting the initial concentration of 40 wt% with seawater and injecting it into Berea-sandstone and Indiana-limestone cores of a 6-in. length and a 1.5-in. diameter saturated with crude oil. The coreflooding experiments were performed at 100°C and a 1,000-psi backpressure. Low-salinity-water and seawater injections caused damage to the reservoir because of the calcium sulfate scale deposition during the flooding process. The newly introduced EOR method did not cause calcium sulfate precipitation, and the core permeability was not affected. The core permeability was measured after the flooding process, and the final permeability was higher than the initial permeability in the case of chelating-agent injection. The coreflooding effluent was analyzed for cations with the inductively coupled plasma (ICP) spectroscopy to explain the dissolution-recovery mechanism. The effect of iron minerals on the rock-surface charge was investigated through the measurements of zeta potential for different rocks containing different iron minerals. HEDTA and EDTA chelating agents at 5 wt% concentration prepared in seawater were able to recover more than 20% oil from the initial oil in place from sandstone and carbonate cores. ICP measurements supported the rock-dissolution mechanism because the calcium, magnesium, and iron concentrations in the effluent samples were more than those in the injected fluids. The IFT-reduction mechanism was confirmed by the low IFT values obtained in the case of chelating agents. The type and concentration of chelating agents affected the IFT value. Higher concentrations yielded lower IFT values because of the increase in carboxylic-group concentration. We found that the high-pH chelating agents increased the negative value of zeta potential, which will change the rock toward more water-wet.


2020 ◽  
Vol 10 (5) ◽  
pp. 6328-6342 ◽  

Low salinity water in the oil reservoirs changes the wettability and increases the oil recovery factor. In sandstone reservoirs, the sand production occurs or intensifies with wettability alteration due to low salinity water injection. In any case, sand production should be stopped and there are many ways to prevent sand production. By modifying the composition of low salinity water, it can be adapted to be more compatible with the reservoir rock and formation water, which has the least formation damage. By eliminating magnesium and calcium ions, smart soft water (SSW) is created which is economically suitable for injection into the reservoirs. By stabilizing the nanoparticles in SSW, nanofluids can be prepared which with injection into the sandstones reservoir increase the oil recovery, change the wettability and increase the rock strength. In this present, SSW composition was determined by compatibility testing, and the SiO2 nanoparticle with 1000 ppm concentration was stabilized in SSW. Eight thin sections were oil wetted by using normal heptane solution and different molars of stearic acid and two thin sections were considered as base thin sections to compare the effect of wettability alteration on sand production. Thin sections were immersed in SSW and Nanofluid, the amount of contact angle and sand production were measured in both cases. The amount of sand produced and the contact angle in SSW was higher than the Nanofluid. The silica nanoparticles reduced the contact angle (more water wetting) and by sitting between the sand particles, more than 40%, it reduced sand production.


2021 ◽  
Author(s):  
Navpreet Singh ◽  
Hemanta Kumar Sarma

Abstract Low salinity waterflooding has been an area of great interest for researchers for almost over three decades for its perceived "simplicity," cost-effectiveness, and the potential benefits it offers over the other enhanced oil recovery (EOR) techniques. There have been numerous laboratory studies to study the effect of injection water salinity on oil recovery, but there are only a few cases reported worldwide where low salinity water flooding (LSW) has been implemented on a field scale. In this paper, we have summarized the results of our analyses for some of those successful field cases for both sandstone and carbonate reservoirs. Most field cases of LSW worldwide are in sandstone reservoirs. Although there have been a lot of experimental studies on the effect of water salinity on recovery in carbonate reservoirs, only a few cases of field-scale implementation have been reported for the LSW in carbonate reservoirs. The incremental improvement expected from the LSW depends on various factors like the brine composition (injection and formation water), oil composition, pressure, temperature, and rock mineralogy. Therefore, all these factors should be considered, together with some specially designed fit-for-purpose experimental studies need to be performed before implementing the LSW on a field scale. The evidence of the positive effect of LSW at the field scale has mostly been observed from near well-bore well tests and inter-well tests. However, there are a few cases such Powder River Basin in the USA and Bastrykskoye field in Russia, where the operators had unintentionally injected less saline water in the past and were pleasantly surprised when the analyses of the historical data seemed to attribute the enhanced oil recovery due to the lower salinity of the injected water. We have critically analyzed all the major field cases of LSW. Our paper highlights some of the key factors that worked well in the field, which showed a positive impact of LSW and a comparative assessment of the incremental recovery realized from the reservoir visa-a-vis the expectations generated from the laboratory-based experimental studies. It is envisaged that such a comparison could be more meaningful and reliable. Also, it identifies the likely uncertainties (and their sources) associated during the field implementation of LSW.


2018 ◽  
Vol 15 (3) ◽  
pp. 564-576 ◽  
Author(s):  
Mohammad Reza Zaeri ◽  
Rohallah Hashemi ◽  
Hamidreza Shahverdi ◽  
Mehdi Sadeghi

Sign in / Sign up

Export Citation Format

Share Document