Objective-Driven Solid-Surface-Roughness Characterization for Enhanced Nuclear-Magnetic-Resonance Petrophysics

SPE Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Shouxiang Mark Ma ◽  
Gabriela Singer ◽  
Songhua Chen ◽  
Mahmoud Eid

Summary Typically, smooth solid surfaces of reservoir rocks are assumed in formation evaluation, such as nuclear-magnetic-resonance (NMR) petrophysics and reservoir-wettability characterization through contact-angle measurements. Measuring the degree of surface roughness (R), or smoothness, and evaluating its effects on formation evaluation are topics of much research. In this paper, we primarily focus on details in characterizing solid-surface roughness and its applications in NMR pore-sizeanalysis. R can be measured by contact techniques and noncontact techniques, such as stylus profilometer, atomic-force microscopy, and different kinds of optical measurements. Each technique has different sensitivities, measurement artifacts, resolutions, and field of view (FOV). Intuitively, although a finer resolution measurement provides the closest account of all surface details, the correspondingly small FOV might compromise the representativeness of the measurement, which is particularly challenging for charactering heterogeneous samples such as carbonates. To balance the FOV and measurement representativeness, and to minimize artifacts, laser scanner confocal microscopy (LSCM) is selected in this study. Results for the more than 27 rock samples tested indicate that rocks of similar rock types have similar R-values. Grainy limestones have relatively higher R-values compared with dolostones, consistent with the dolostone’s crystallization surface features. Muddy limestones have smoother surfaces, resulting in the lowest R-values among the rocks studied. For sandstones, R varies with clay types and content. For rocks containing two distinct minerals, two R-values are observed from the R profiles, which for these rock types justifies the use of two NMR surface relaxivity (ρ2) parameters for determining the pore-size distribution (PSD) from the NMR T2distribution. The novelty here is the integration of LSCM and NMR to obtain an NMR PSD relevant for permeability, capillary pressure, and other petrophysical parameters. Typically, ρ2 is calibrated using the total surface area from Brunauer-Emmett-Teller (BET; Brunauer et al. 1938) gas adsorption, but this underestimates the NMR pore size because of surface-roughness effects. In our novel approach, we use R measured from LSCM to correct ρ2 for surface-roughness effects, and thereby obtain the NMR pore size more relevant for permeability and other petrophysical parameters. We then compare the roughness-corrected NMR PSD against pore size from microcomputed tomography (micro-CT) scanning (which is roughness independent). The good agreement between roughness-corrected NMR and micro-CT pore sizes in the micropore region validates our new technique, and highlights the importance of surface-roughness characterization in NMR petrophysics.

2015 ◽  
Vol 3 (1) ◽  
pp. SA77-SA89 ◽  
Author(s):  
John Doveton ◽  
Lynn Watney

The T2 relaxation times recorded by nuclear magnetic resonance (NMR) logging are measures of the ratio of the internal surface area to volume of the formation pore system. Although standard porosity logs are restricted to estimating the volume, the NMR log partitions the pore space as a spectrum of pore sizes. These logs have great potential to elucidate carbonate sequences, which can have single, double, or triple porosity systems and whose pores have a wide variety of sizes and shapes. Continuous coring and NMR logging was made of the Cambro-Ordovician Arbuckle saline aquifer in a proposed CO2 injection well in southern Kansas. The large data set gave a rare opportunity to compare the core textural descriptions to NMR T2 relaxation time signatures over an extensive interval. Geochemical logs provided useful elemental information to assess the potential role of paramagnetic components that affect surface relaxivity. Principal component analysis of the T2 relaxation time subdivided the spectrum into five distinctive pore-size classes. When the T2 distribution was allocated between grainstones, packstones, and mudstones, the interparticle porosity component of the spectrum takes a bimodal form that marks a distinction between grain-supported and mud-supported texture. This discrimination was also reflected by the computed gamma-ray log, which recorded contributions from potassium and thorium and therefore assessed clay content reflected by fast relaxation times. A megaporosity class was equated with T2 relaxation times summed from 1024 to 2048 ms bins, and the volumetric curve compared favorably with variation over a range of vug sizes observed in the core. The complementary link between grain textures and pore textures was fruitful in the development of geomodels that integrates geologic core observations with petrophysical log measurements.


2018 ◽  
Vol 37 (1) ◽  
pp. 412-428
Author(s):  
Feng Zhu ◽  
Wenxuan Hu ◽  
Jian Cao ◽  
Biao Liu ◽  
Yifeng Liu ◽  
...  

Nuclear magnetic resonance cryoporometry is a newly developed technique that can characterize the pore size distribution of nano-scale porous materials. To date, this technique has scarcely been used for the testing of unconventional oil and gas reservoirs; thus, their micro- and nano-scale pore structures must still be investigated. The selection of the probe material for this technique has a key impact on the quality of the measurement results during the testing of geological samples. In this paper, we present details on the nuclear magnetic resonance cryoporometric procedure. Several types of probe materials were compared during the nuclear testing of standard nano-scale porous materials and unconventional reservoir geological samples from Sichuan Basin, Southwest China. Gas sorption experiments were also carried out on the same samples simultaneously. The KGT values of the probe materials octamethylcyclotetrasiloxane and calcium chloride hexahydrate were calibrated using standard nano-scale porous materials to reveal respective values of 149.3 Knm and 184 Knm. Water did not successfully wet the pore surfaces of the standard controlled pore glass samples; moreover, water damaged the pore structures of the geological samples, which was confirmed during two freeze-melting tests. The complex phase transition during the melting of cyclohexane introduced a nuclear magnetic resonance signal in addition to that from liquid in the pores, which led to an imprecise characterization of the pore size distribution. Octamethylcyclotetrasiloxane and calcium chloride hexahydrate have been rarely employed as nuclear magnetic resonance cryoporometric probe materials for the testing of an unconventional reservoir. Both of these materials were able to characterize pore sizes up to 1 μm, and they were more applicable than either water or cyclohexane.


SPE Journal ◽  
2015 ◽  
Vol 20 (04) ◽  
pp. 824-830 ◽  
Author(s):  
Richard F. Sigal

Summary The behavior of fluids in nanometer-scale pores can have a strong functional dependence on the pore size. In mature organic-shale reservoirs, the nuclear-magnetic-resonance (NMR) signal from methane decays by surface relaxation. The methane NMR spectrum provides an uncalibrated pore-size distribution for the pores that store methane. The distribution can be calibrated by calculating a pore-wall-surface area from a methane-Langmuir-adsorption isotherm. When this method was applied to samples from a reservoir in the dry-gas window, the pores containing methane had pore sizes that ranged from 1 to approximately 100 nm. Approximately 20–40% of the pore volume was in pores smaller than 10 nm, where deviation from bulk-fluid behavior can be significant. The samples came from two wells. The surface relaxivity for the sample from Well 2 was somewhat different from the relaxivity for the two samples from Well 1. Samples that adsorbed more methane had smaller pore sizes. This methodology to obtain pore-size distributions should be extendable to more-general organic-shale reservoirs.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. JM15-JM28 ◽  
Author(s):  
Thomas Hiller ◽  
Norbert Klitzsch

Measurement of nuclear magnetic resonance (NMR) relaxation is a well-established laboratory/borehole method to characterize the storage and transport properties of rocks due to its direct sensitivity to the corresponding pore-fluid content (water/oil) and pore sizes. Using NMR, the correct estimation of, e.g., permeability strongly depends on the underlying pore model. Usually, one assumes spherical or cylindrical pores for interpreting NMR relaxation data. To obtain surface relaxivity and thus, the pore-size distribution, a calibration procedure by, e.g., mercury intrusion porosimetry or gas adsorption has to be used. Recently, a joint inversion approach was introduced that used NMR measurements at different capillary pressures/saturations (CPS) to derive surface relaxivity and pore-size distribution (PSD) simultaneously. We further extend this approach from a bundle of parallel cylindrical capillaries to capillaries with triangular cross sections. With this approach, it is possible to account for residual or trapped water within the pore corners/crevices of partially saturated pores. In addition, we have developed a method that allows determining the shape of these triangular capillaries by using NMR measurements at different levels of drainage and imbibition. We show the applicability of our approach on synthetic and measured data sets and determine how the combination of NMR and CPS significantly improves the interpretation of NMR relaxation data on fully and partially saturated porous media.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. D293-D301
Author(s):  
Emily L. Fay ◽  
Denys J. Grombacher ◽  
Rosemary J. Knight

Nuclear magnetic resonance (NMR) methods can be used to measure the diffusion coefficient [Formula: see text] of fluids. In porous materials, diffusion of the pore fluid is restricted by pore boundaries, such that [Formula: see text] may be smaller than the diffusion coefficient of the bulk fluid. This reduction in [Formula: see text] provides information about the geometry of the pore space. Significant overestimates of [Formula: see text] can, however, occur due to internal gradients caused by magnetic susceptibility contrasts between the pore fluid and the solid phase. We have investigated the way in which internal gradients can impact the measured diffusion coefficient and obscure the link to pore geometry in unconsolidated sediments. We focus on measurements of [Formula: see text] obtained with a static gradient diffusion-editing sequence, which can be used with NMR logging tools to measure [Formula: see text] in subsurface sediments. Laboratory measurements of [Formula: see text] measured with a diffusion-editing [Formula: see text]-[Formula: see text] sequence indicate significant impacts from internal gradients, including [Formula: see text] values several orders of magnitude larger than [Formula: see text] of bulk water. The log-mean [Formula: see text] values were found to be highly correlated with estimated internal gradient magnitudes and indicate no clear relationship to pore size. Samples with heterogeneous magnetic susceptibility of the solid phase indicate [Formula: see text] distributions with multiple peaks, reflecting the nonuniform distribution of internal gradients in the sediment. We found evidence of high internal gradients impacting a majority of our samples, resulting in increased [Formula: see text] values that do not reflect pore size even in samples with low magnetic susceptibility.


Sign in / Sign up

Export Citation Format

Share Document