A Coupled Diffusion Model for Gas Transport in Tight Unconventional Reservoirs

2020 ◽  
Author(s):  
Meng Yuan ◽  
Yu Jing ◽  
Ying Da Wang ◽  
Ryan Armstrong ◽  
Peyman Mostaghimi
SPE Journal ◽  
2021 ◽  
pp. 1-26
Author(s):  
Ye Tian ◽  
Chi Zhang ◽  
Zhengdong Lei ◽  
Xiaolong Yin ◽  
Hossein Kazemi ◽  
...  

Summary Most simulators currently use the advection/diffusion model (ADM), where the total flux comprises Darcian advection and Fickian diffusion. However, significant errors can arise, especially for modeling diffusion processes in fractured unconventional reservoirs, if diffusion is modeled by the conventional Fick’s law using molar concentration. Hence, we propose an improved multicomponent diffusion model for fractured reservoirs to better quantify the multiphase multicomponent transport across the fracture/matrix interface. We first give a modified formulation of the Maxwell-Stefan (MS) equation to model the multicomponent diffusion driven by the chemical potential gradients. A physics-based modification is proposed for the ADM in fractured reservoirs, where fracture, matrix, and their interface are represented by three different yet interconnected flow domains to honor the flux continuity at the fracture/matrix interface. The added interface using a more representative fluid saturation and composition of the interface can hence better capture the transient mass fluxes between fracture and matrix. The proposed approach is also implemented in an in-house compositional simulator. The multicomponent diffusion model is validated with both intraphase and interphase diffusion experiments. Then, the improved model for fracture/matrix interaction is compared with a fine-grid model. The proposed multiple interacting continua (MINC) model with three continua (MINC3) can better match the fine-grid model’s result than the double-porosity (DP) model, which only obtains a fair match at an early time. Then, we simulate a gas huff ‘n’ puff (HnP) well in the Permian Basin to investigate the effect of diffusion within the fractured tight oil reservoir. The simulation reveals that diffusion has a minor effect on the performance of depletion when oil is the dominant phase. For gas HnP, the simulation neglecting diffusion will underestimate the oil recovery factor (RF) but overestimate the gas rate. The DP approach tends to overestimate the RF of heavy components but leads to a similar cumulative oil RF compared with MINC3. With the diffusion included in the simulation, gas HnP performance becomes more sensitive to the soaking time than the model without diffusion. Although increasing the soaking time will lead to a higher RF after considering diffusion, the incremental oil is not sufficiently large to justify a prolonged soaking time.


Aquaculture ◽  
2020 ◽  
Vol 520 ◽  
pp. 735009 ◽  
Author(s):  
Yunxia Zhao ◽  
Jihong Zhang ◽  
Wenguang Wu ◽  
Fei Teng ◽  
Ryan M. Kelly ◽  
...  

2020 ◽  
Vol 169 ◽  
pp. 32-39 ◽  
Author(s):  
Garrett L. Schieber ◽  
Brant M. Jones ◽  
Thomas M. Orlando ◽  
Peter G. Loutzenhiser

Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 130-143
Author(s):  
Ebrahim Fathi ◽  
Fatemeh Belyadi ◽  
Bahiya Jabbar

The effect of poroelastic properties of the shale matrix on gas storage and transport mechanisms has gained significant attention, especially during history-matching and hydrocarbon production forecasting in unconventional reservoirs. The common oil and gas industry practice in unconventional reservoir simulation is the extension of conventional reservoir simulation that ignores the dynamic behavior of matrix porosity and permeability as a function of reservoir effective net stress. This approach ignores the significant impact of the poroelastic characteristics of the shale matrix on hydrocarbon production. The poroelastic characteristics of the shale matrix highly relate to the shale matrix geomechanical properties, such as the Young’s Modulus, Poisson’s ratio, bulk modulus, sorption behavior, total organic content (TOC), mineralogy and presence of natural fractures in the multi-scale shale structure. In this study, in order to quantify the effect of the poroelasticity of the shale matrix on gas production, a multi-continuum approach was employed in which the shale matrix was divided into organic materials, inorganic materials and natural fractures. The governing equations for gas transport and storage in shale were developed from the basic fundamentals of mass and momentum conservation equations. In this case, gas transport in organics was assumed to be diffusive, while gas transport in inorganics was governed by convection. Finally, a fracture system was added to the multi-scale shale gas matrix, and the poroelastic effect of the shale matrix on transport and storage was investigated. A modified Palmer and Mansoori model (1998) was used to include the pore compression, matrix swelling/shrinkage and desorption-induced deformation of shale organic matter on the overall pore compressibility of the shale matrix. For the inorganic part of the matrix, relations between rock mechanical properties and the pore compressibility were obtained. A dual Langmuir–Henry isotherm was also used to describe the sorption behavior of shale organic materials. The coupled governing equations of gas storage and transport in the shale matrix were then solved using the implicit finite difference approach using MATLAB. For this purpose, rock and fluid properties were obtained using actual well logging and core analysis of the Marcellus gas well. The results showed the importance of the poroelastic effect on the pressure response and rate of gas recovery from the shale matrix. The effect was found to be mainly due to desorption-induced matrix deformation at an early stage. Coupling the shale matrix gas production including the poroelastic effect in history-matching the gas production from unconventional reservoirs will significantly improve engineering completion design optimization of the unconventional reservoirs by providing more accurate and robust production forecasts for each hydraulic fracture stage.


1975 ◽  
Vol 6 (4) ◽  
pp. 593-600 ◽  
Author(s):  
A. McNabb ◽  
G. D. McAdam ◽  
E. Bradford

Sign in / Sign up

Export Citation Format

Share Document