Optimizing Completion Design and Well Spacing in the Powder River Basin Niobrara Oil Play

2021 ◽  
Author(s):  
Blake Burget ◽  
Neal Dannemiller ◽  
Dylan Garrett ◽  
Erik Kling

Abstract A seven-step workflow to help subsurface teams establish an initial thesis for optimal completion design (cluster spacing, proppant per cluster) and well spacing in emerging / under-explored resource plays is proposed and executed for the Powder River Basin Niobrara unconventional oil play. The workflow uses Rate Transient Analysis (RTA) to determine the Ac∗k parameter and then walks the reader through how to sequentially decouple the parameter into its constituent parts (frac height (h), number of symmetrical fractures achieved (nf), permeability (k) and fracture half-length (xf)). Once these terms were quantified for each of the case study wells, they were used in a black oil reservoir simulator to compare predicted verses actual cumulative oil performance at 30, 60, 90,120 & 180 days. A long-term production match was achieved using xf as the lone history match parameter. xf verses proppant per effective half-cluster yielded an R2 value of > 0.90. 28 simulation scenarios were executed to represent a range of cluster spacing, proppant per cluster and well spacing scenarios. Economics (ROR and/or NPV10/Net Acre) were determined for each of these scenarios under three different commodity pricing assumptions ($40/$2.50, $50/$2.50 and $60/$2.50). An initial thesis for optimal cluster spacing, proppant per designed cluster and well spacing were determined to be 12’, 47,500 lbs and 8-14 wells per section (based on whether or not fracture asymmetry is considered) when WTI and Henry Hub are assumed to be $50 & $2.50 flat.

SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3280-3299
Author(s):  
Hongyang Chu ◽  
Xinwei Liao ◽  
Zhiming Chen ◽  
W. John John Lee

Summary Because of readily available production data, rate-transient analysis (RTA) is an important method to predict productivity and reserves, and for reservoir and completion characterization in unconventional reservoirs. In addition, multihorizontal well pads are a common development method for unconventional reservoirs. Close well spacing between multifractured horizontal wells (MFHWs) in the multiwell pads makes interference from adjacent MFHWs especially significant. For RTA of production data from multihorizontal well pads, the influence of adjacent MFHWs cannot be ignored. In this work, we propose a semianalytic RTA model for the multihorizontal well pad with arbitrary multiple MFHW properties and starting-production times. Combining Laplace transformation and finite-difference analysis, we obtained a general solution of a multiwell mathematical model to use in RTA. Our model is applicable to cases of multiple MFHWs with different bottomhole pressures (BHPs), varying hydraulic-fracture properties, and different starting-production times. In the solutions, we observe bilinear flow, linear flow, transition flow, and multi-MFHW flow. Rate-normalized pressure (RNP) and its derivative are also affected by multi-MFHW flow. Two case studies revealed that the negative effect of interwell interference on the parent-well productivity is closely related to the pressure distribution caused by the production of child wells.


Sign in / Sign up

Export Citation Format

Share Document