reservoir compartmentalization
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Abdullah Al Anboori ◽  
Stephen Dee ◽  
Khalil Al Rashdi ◽  
Herbert Volk

Abstract The degree of fluid compartmentalization has direct implications on the development costs of oil and gas reservoirs, since it may negatively impact gas water contacts (GWC) and fluid condensate gas ratios (CGR). In this case study on the Barik Formation in the giant Khazzan gas field in Block 61 in Oman we demonstrate how integrating independent approaches for assessing potential reservoir compartmentalization can be used to assess compartmentalization risk. The three disciplines that were integrated are structural geology (fault seal analysis, movement and stress stages of faults and fractures, traps geometry over geological time), petroleum systems (fluid chemistry and pressure, charge history) and sedimentology-stratigraphy including diagenesis (sedimentological and diagenetic controls on vertical and lateral facies and reservoir quality variation). Dynamic data from production tests were also analyzed and integrated with the observations above. Based on this work, Combined Common Risk Segment (CCRS) maps with a most likely and alternative scenarios for reservoir compartmentalization were constructed. While pressure data carry significant uncertainty due to the tight nature of the deeply buried rocks, it is clear pressures in gas-bearing sections fall onto a single pressure gradient across Block 61, while water pressures indicate variable GWCs. Overall, the GWCs appear to shallow across the field towards the NW, while water pressure appears to increase in that direction. The "apparent" gas communication with separate aquifers is difficult to explain conventionally. A range of scenarios for fluid distribution and reservoir connectivity are discussed. Fault seal compartmentalization and different trap spill points were found to be the most likely mechanism explaining fluid distribution and likely reservoir compartmentalization. Perched water may be another factor explaining variable GWCs. Hydrodynamic tilting due to the flow of formation water was deemed an unlikely scenario, and the risk of reservoir compartmentalization due to sedimentological and diagenetic flow barriers was deemed to be low.


2021 ◽  
Author(s):  
Alister Albert Suggust ◽  
Aizuddin Khalid ◽  
Mohammad Zulfiqar Usop ◽  
M Idraki M Khalil

Abstract The Balingian province is located offshore Sarawak, comprising of at least 7 oil fields with its regional geology consisting of a combination of deltaic & shoreface system. Though consisting of clastic reservoirs, the fields are highly sophisticated in terms of reservoir compartmentalization, hence uncertainties in fluid contacts, differing depletion strategies and varying production performance per well. As the regional production has gone into brownfield stage, the challenge is to determine the most suitable secondary recovery method to prolong field life. The subsurface & feasibility studies conducted produced mixed results between application of water & gas injection, giving recovery factors between 30 to 40%, and implementation so much depending on source of water & gas and cost benefit analyses. The application of IOR across Balingian province are executed in pilot mode across all fields. While the pilots are still continuing, this paper is to share the methodology, recovery factors and process of the regional study and some results from the ongoing surveillance post-execution, and the wayforward.


2021 ◽  
Author(s):  
Kamlesh Ramcharitar ◽  
Arti Kandice Ramdhanie

Abstract Despite long production histories, operators of mature oilfields sometimes struggle to account for reservoir compartmentalization. Geological-led workflows do not adequately honor legacy production data since inherent bias is introduced into the process of allocating production by interpreted flow units. This paper details the application of machine learning methods to identify possible reservoir compartments based on legacy production data recorded from individual well completions. We propose an experimental data-driven workflow to rapidly generate multiple scenarios of connected volumes in the subsurface. The workflow is premised upon the logic that well completions draining the same connected reservoir space can exhibit similar production characteristics (rate declines, GOR trends and pressures). We show how the specific challenges of digitized legacy data are solved using outlier detection for error checking and Kalman smoothing imputation for missing data in the structural time series model. Finally, we compare the subsurface grouping of completions obtained by applying unsupervised pattern recognition with Hierarchal clustering. Application of this workflow results in multiple possible scenarios for defining reservoir compartments based on production data trends only. The method is powerful in that, it provides interpretations that are independent of subsurface scenarios generated by more traditional workflows. We demonstrate the potential to integrate interpretations generated from more conventional workflows to increase the robustness of the overall subsurface model. We have leveraged the power of machine learning methods to classify more than forty (40) well completions into discrete reservoir compartments using production characteristics only. This effort would be extremely difficult, or otherwise unreliable given the inherent limitations of human spatial, temporal, and cognitive abilities.


SPE Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Morteza Asemani ◽  
Ahmad Reza Rabbani ◽  
Hashem Sarafdokht

Summary The ability of geochemistry techniques in reservoir-continuity studies has already been proved. Most of the traditional methods mainly involve analyzing nonpolar components of crude oil and overlooking polar components. Despite valuable information obtained from nonpolar components, these compounds are sometimes affected by various alterations or likely provide only a piece of the reservoir-compartmentalization puzzle. In this paper, an integrated geochemical approach that uses nonpolar (i.e., saturates and aromatics) and polar (i.e., asphaltenes) components of crude oil was performed to evaluate reservoir continuity efficiently. The Shadegan Oil Field in the Dezful Embayment in southwest Iran was investigated for reservoir-continuity studies to show the efficiency of this proposed technique. The selected interparaffin peak ratios and light hydrocarbons [the C7 oil correlation star diagram (C7CSD)] from whole-oil gas chromatography (GC) (WOGC) chromatograms were used to obtain oil fingerprints from the nonpolar fraction of crude oils. The Fourier-transform infrared (FTIR) spectroscopy of asphaltenes was applied to obtain oil fingerprints from the polar fraction of crude oils. The pairwise comparison of studied wells by each technique was summarized in a similarity matrix with green, yellow, and red colors to show connectivity, limited connectivity, and disconnectivity according to oil fingerprints. Finally, a compartmentalization model was prepared from the integrated results of different techniques considering the worst-case scenarios regarding the occurrence or absence of reservoir continuity when relying on individual methods for the studied field. Results show that the Shadegan Oil Field comprises three zones in the Asmari Reservoir and two zones in the Bangestan Reservoir. Reservoir-engineering data, including pressure data and pressure/volume/temperature (PVT), completely corroborated the obtained results from the geochemical approach. The consistency of results suggested FTIR oil fingerprinting of asphaltene as a novel and straightforward technique, which is a complementary or even alternative method with respect to previous geochemical methods.


Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2169-2195
Author(s):  
Leonardo Del Sole ◽  
Marco Antonellini ◽  
Roger Soliva ◽  
Gregory Ballas ◽  
Fabrizio Balsamo ◽  
...  

Abstract. Porous sandstones are important reservoirs for geofluids. Interaction therein between deformation and cementation during diagenesis is critical since both processes can strongly reduce rock porosity and permeability, deteriorating reservoir quality. Deformation bands and fault-related diagenetic bodies, here called “structural and diagenetic heterogeneities”, affect fluid flow at a range of scales and potentially lead to reservoir compartmentalization, influencing flow buffering and sealing during the production of geofluids. We present two field-based studies from Loiano (northern Apennines, Italy) and Bollène (Provence, France) that elucidate the structural control exerted by deformation bands on fluid flow and diagenesis recorded by calcite nodules associated with the bands. We relied on careful in situ observations through geo-photography, string mapping, and unmanned aerial vehicle (UAV) photography integrated with optical, scanning electron and cathodoluminescence microscopy, and stable isotope (δ13C and δ18O) analysis of nodules cement. In both case studies, one or more sets of deformation bands precede and control selective cement precipitation. Cement texture, cathodoluminescence patterns, and their isotopic composition suggest precipitation from meteoric fluids. In Loiano, deformation bands acted as low-permeability baffles to fluid flow and promoted selective cement precipitation. In Bollène, clusters of deformation bands restricted fluid flow and focused diagenesis to parallel-to-band compartments. Our work shows that deformation bands control flow patterns within a porous sandstone reservoir and this, in turn, affects how diagenetic heterogeneities are distributed within the porous rocks. This information is invaluable to assess the uncertainties in reservoir petrophysical properties, especially where structural and diagenetic heterogeneities are below seismic resolution.


2020 ◽  
Author(s):  
Leonardo Del Sole ◽  
Marco Antonellini ◽  
Roger Soliva ◽  
Gregory Ballas ◽  
Fabrizio Balsamo ◽  
...  

Abstract. Porous sandstones are important reservoirs for geofluids. Interaction therein between deformation and cementation during diagenesis is critical since both processes can strongly reduce rock porosity and permeability, deteriorating reservoir quality. Deformation bands (DBs) and structural-related diagenetic bodies, here named Structural and Diagenetic Heterogeneities (SDH), have been recognized to negatively affect fluid flow at a range of scales and potentially lead to reservoir compartmentalization, influencing flow buffering and sealing during production. The hydraulic behavior of DBs is not yet fully constrained, and it remains poorly understood also how diagenetic processes interact with DBs to steer fluid flow mechanisms and evolution. In this contribution we present two field-based studies from Loiano (Northern Apennines, Italy) and Bollène (Provence, France) that contribute to elucidating the structural control exerted by DBs on fluid flow and diagenesis recorded by calcite nodules associated with the bands. We relied on careful field observations and a variety of multiscalar mapping techniques (photography, string mapping, and drone aerial photography), integrated with optical, scanning electron and cathodoluminescence microscopy, and stable isotope (δ13C and δ18O) analysis of nodules cement. In both case studies, at least one set of DBs precedes and controls selective cement precipitation. Cement texture and cathodoluminescence patterns, and their invariably negative δ13C and δ18O value ranges, suggest a meteoric environment for nodule formation. In Loiano, DBs acted as low-permeability barriers to fluid flow and promoted selective cement precipitation. In Bollène, clusters of DBs restricted fluid flow and focused diagenesis in parallel-to-band compartments. Our work shows how low-permeability DBs in porous sandstones can actually affect fluid flow and localize diagenetic processes (in the shallow crust) that, in turn, could further enhance the sealing capacity of these structural features.


Sign in / Sign up

Export Citation Format

Share Document