Investigation of increasing hydraulic fracture conductivity within producing ultra-deep coal seams using time-lapse rate transient analysis: A long-term pilot experiment in the Cooper Basin, Australia

2020 ◽  
Vol 220 ◽  
pp. 103363 ◽  
Author(s):  
Erik C. Dunlop ◽  
Alireza Salmachi ◽  
Peter J. McCabe
2012 ◽  
Vol 15 (05) ◽  
pp. 571-583 ◽  
Author(s):  
C.S.. S. Kabir ◽  
M.. Elgmati ◽  
Z.. Reza

Summary Estimating the average drainage-area pressure (pav) of individual wells is a cornerstone to any reservoir-management practice. Yet conventional methods do not always offer reliable solutions to this vexing problem. This study shows that transient flow-after-flow (FAF) testing offers an excellent opportunity to establish pav in a time-lapse mode, when conducted following operational shutdowns. Instrumented wells are natural candidates for FAF testing. Real-time surveillance offers the opportunity to perform rate-transient analysis that results in drainage volume and, consequently, pav. However, gathering quality rate data commensurate with pressure over a long producing period is fraught with uncertainty, which raises questions about the validity of the pav so obtained. In addition, continuous changes in drainage-boundary conditions pose modeling challenges with a given reservoir model. Therefore, the independent estimation of pav cannot be overemphasized. This paper presents a theroretical framework for transient FAF testing and also shows a pragmatic approach to handling pressure/rate data incoherence.


2021 ◽  
Vol 196 ◽  
pp. 108046
Author(s):  
Mahmoud Desouky ◽  
Murtada Saleh Aljawad ◽  
Theis Solling ◽  
Amao Abduljamiu ◽  
Kion Norrman ◽  
...  

SPE Journal ◽  
2013 ◽  
Vol 18 (04) ◽  
pp. 795-812 ◽  
Author(s):  
C.R.. R. Clarkson ◽  
J.D.. D. Williams-Kovacs

Summary Early fluid production and flowing pressure data gathered immediately after fracture stimulation of multifractured horizontal wells may provide an early opportunity to generate long-term forecasts in shale-gas (and other hydraulically fractured) reservoirs. These early data, which often consist of hourly (if not more frequent) monitoring of fracture/formation fluid rates, volumes, and flowing pressures, are gathered on nearly every well that is completed. Additionally, fluid compositions may be monitored to determine the extent of load fluid recovery, and chemical tracers added during stage treatments to evaluate inflow from each of the stages. There is currently debate within the industry of the usefulness of these data for determining the long-term production performance of the wells. “Rules of thumb” derived from the percentage of load-fluid recovery are often used by the industry to provide a directional indication of well performance. More-quantitative analysis of the data is rarely performed; it is likely that the multiphase-flow nature of flowback and the possibility of early data being dominated by wellbore-storage effects have deterred many analysts. In this work, the use of short-term flowback data for quantitative analysis of induced-hydraulic-fracture properties is critically evaluated. For the first time, a method for analyzing water and gas production and flowing pressures associated with the flowback of shale-gas wells, to obtain hydraulic-fracture properties, is presented. Previous attempts have focused on single-phase analysis. Examples from the Marcellus shale are analyzed. The short (less than 48 hours) flowback periods were followed by long-term pressure buildups (approximately 1 month). Gas + water production data were analyzed with analytical simulation and rate-transient analysis methods designed for analyzing multiphase coalbed-methane (CBM) data. This analogy is used because two-phase flowback is assumed to be similar to simultaneous flow of gas and water during long-term production through the fracture system of coal. One interpretation is that the early flowback data correspond to wellbore + fracture volume depletion (storage). It is assumed that fracture-storage volume is much greater than wellbore storage. This flow regime appears consistent with what is interpreted from the long-term pressure-buildup data, and from the rate-transient analysis of flowback data. Assuming further that the complex fracture network created during stimulation is confined to a region around perforation clusters in each stage, one can see that fluid-production data can be analyzed with a two-phase tank-model simulator to determine fracture permeability and drainage area, the latter being interpreted to obtain an effective (producing) fracture half-length given geometrical considerations. Total fracture half-length, derived from rate-transient analysis of online (post-cleanup) data, verifies the flowback estimates. An analytical forecasting tool that accounts for multiple sequences of post-storage linear flow, followed by late-stage boundary flow, was developed to forecast production with flowback-derived parameters, volumetric inputs, matrix permeability, completion data, and operating constraints. The preliminary forecasts are in very good agreement with online production data after several months of production. The use of flowback data to generate early production forecasts is therefore encouraging, but needs to be tested for a greater data set for this shale play and for other plays, and should not be used for reserves forecasting.


2021 ◽  
Author(s):  
HanYi Wang ◽  
Mukul Sharma ◽  
Harold McGowen

Abstract Market-induced production shut-downs and restarts offer us an opportunity to gather step-rate and shut-in data for pressure transient analysis (PTA) and rate transient analysis (RTA). In this study, we present a unified transient analysis (UTA) to combine PTA and RTA in a single framework. In this new approach continuous production data, step-rate data, shut-in data and re-start data can be visualized and analyzed in a single superposition plot, which can be used to estimate both Afk and infer formation pore pressure in a holistic manner by utilizing all available data. Most importantly, we show that traditional log-log and square root of time plots can lead to false interpretation of the termination of linear-flow or power-law behavior. Field cases are presented to demonstrate the superiority of the newly introduced superposition plot, along with discussion on the calibration of long-term bottom-hole pressure with short-term measurements.


2019 ◽  
Vol 59 (1) ◽  
pp. 289 ◽  
Author(s):  
A. Salmachi ◽  
J. Barkla

Permeability of coal seam gas (CSG) reservoirs is stress/desorption dependent and may change during the life of the reservoir. This study investigates permeability change with depletion in several CSG wells in the Fairview Field: a prolific reservoir in the Bowen Basin, Australia. High-resolution pressure gauges at surface provide an opportunity to conduct time-lapse pressure transient analysis (PTA) on the wells that have multiple shut-ins. Pressure build-up tests can be replicated by calculating bottom-hole pressure when surface pressure (tubing and/or annulus) is recorded at high-resolution during any shut-in event. This eliminates the need to perform multiple well tests, which are time consuming and costly to run. The production history of 100 CSG wells was examined to find suitable candidates to perform time-lapse PTA. This was used to investigate how Bandanna Coal permeability changes with depletion. Three wells with high-quality shut-ins were identified and analysed to calculate effective permeability to gas and average reservoir pressure. The results indicate that coal permeability can enhance up to one order of magnitude during the life of a CSG well in the Fairview Field, and this can significantly improve production performance. These wells, located in a depleted area of the field, show rapid increase in permeability with decline in average reservoir pressure. The integration of rate transient analysis with the results of time-lapse PTA for one of the study wells reveals that the functional form of permeability increase is exponential in the study area, and a permeability modulus of –0.00678 psia–1 was obtained.


2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Erdal Ozkan

Abstract Pressure-transient analysis (PTA) is widely used in the industry to estimate fracture half-length, height, and skin due to hydraulic fracturing as well as reservoir parameters. PTA studies focus on pressure data from long shut-in periods and diagnostic fracture injection tests (DFITs), while analyzing the pressure data recorded during the hydraulic fracture treatment has been overlooked. This paper details the state-of-the-art in applying pressure transient analysis to better estimate hydraulic fracture conductivity and dimensions and improve treatment designs stage by stage. The initial portion of this paper describes the application of a novel and low-cost diagnostic method for post-fracture analysis. The bulk of the paper is dedicated to present case histories that illustrate the PTA of the recorded pressure data during treatment to obtain estimates of fracture dimensions and conductivity. The pressure recorded during each stage is processed to ensure the proper data quality and the pressure falloff at the end of the stage is filtered out. The pressure is then analyzed for multi-cluster, finite-conductivity fractures, to obtain the fracture half-length, conductivity, and leakoff. Calculated parameters from each stage are compared to provide insights into the hydraulic fracture design and confirm the adequacy of the treatment design along the well. The results from stage leakoff pressure analysis are very valuable in confirming relative fracture conductivity and providing a qualitative measure of fracture length and height. The total stimulated reservoir area (SRA) calculated using the proposed method yields comparable values to SRA obtained from buildup analysis. The information provided is as valuable and comparable as that from direct near-wellbore diagnostics, such as radioactive traces, temperature logging, real-time micro-seismic monitoring, and production logging. The paper proposes a novel, low-cost analytical PTA method for estimating fracture dimensions, skin, and leakoff coefficient. We illustrate – with several field cases – that conventional post-fracture techniques can be integrated with the stage by stage PTA analysis to provide not only a more consistent and systematic analysis but also a more accurate assessment of treatment effectiveness. The findings of this paper help improve the efficiency of multistage hydraulic fracturing stimulation of horizontal wells.


2021 ◽  
Author(s):  
Blake Burget ◽  
Neal Dannemiller ◽  
Dylan Garrett ◽  
Erik Kling

Abstract A seven-step workflow to help subsurface teams establish an initial thesis for optimal completion design (cluster spacing, proppant per cluster) and well spacing in emerging / under-explored resource plays is proposed and executed for the Powder River Basin Niobrara unconventional oil play. The workflow uses Rate Transient Analysis (RTA) to determine the Ac∗k parameter and then walks the reader through how to sequentially decouple the parameter into its constituent parts (frac height (h), number of symmetrical fractures achieved (nf), permeability (k) and fracture half-length (xf)). Once these terms were quantified for each of the case study wells, they were used in a black oil reservoir simulator to compare predicted verses actual cumulative oil performance at 30, 60, 90,120 & 180 days. A long-term production match was achieved using xf as the lone history match parameter. xf verses proppant per effective half-cluster yielded an R2 value of > 0.90. 28 simulation scenarios were executed to represent a range of cluster spacing, proppant per cluster and well spacing scenarios. Economics (ROR and/or NPV10/Net Acre) were determined for each of these scenarios under three different commodity pricing assumptions ($40/$2.50, $50/$2.50 and $60/$2.50). An initial thesis for optimal cluster spacing, proppant per designed cluster and well spacing were determined to be 12’, 47,500 lbs and 8-14 wells per section (based on whether or not fracture asymmetry is considered) when WTI and Henry Hub are assumed to be $50 & $2.50 flat.


Sign in / Sign up

Export Citation Format

Share Document