Integrated Hydraulic Fracturing Strategy Leads to Successful Execution of the First Highly Deviated Ultra-Deep Well in Tarim Oilfield

2022 ◽  
Author(s):  
Liao Wang ◽  
Bo Cai ◽  
Wentong Fan ◽  
Zhanwei Yang ◽  
Guowei Xu ◽  
...  

Abstract Well K1002 is the first highly deviated ultra-deep well in Tarim Oilfield of China, with the reservoir depth 7060m and the well deviation of 60° ∼ 77.6° in the fractured interval. Because of large deviation angle, high breakdown pressure and in-situ stress, poor effectiveness of natural fractures, large reservoir thickness, it is difficult and risky to implement hydraulic fracturing. In this paper, the fractured well was taken for a case study to illustrate the holistic optimization to guarantee the treatment success, a world-wide difficulty with high engineering risk. For figuring out a reasonable treatment design, comprehensive lab experiments and numerical simulation were conducted to analyze and benchmark the reservoir characteristics, rock mechanics and geological model. Systematic study on reducing breakdown pressure, development of natural fractures evaluation, multi-size combination of diverting agent, separated layer stimulation and fracture parameters optimization, treatment fluid formulation, proppant screening and operation program were carried out. Considering the wellbore trajectory and rock mechanics characteristics of well K1002, a breakdown pressure prediction model was established to optimize the perforation orientation. The best perforation orientation was 28° and 208°, the worst perforation orientation was 148° and 328°, and the breakdown pressure range was 168-175MPa with 60° phase angle. Combination with "imaging logging (0-3m) + far detection acoustic logging (0-30m) + geomechanics (0-300m)", the comprehensive evaluation and prediction of natural fractures in near wellbore area and far wellbore area were realized. Based on this, the stimulation technology of "mechanical layering + diverting agent" was optimized to connect the fracture development zone in near wellbore and far wellbore area. According to the Tight Packing Theory, the idea of "multi-size particles combination of diverting agent" was put forward. Through the experiment study, the combination of 1-5mm and 5-10mm particles was optimized, and the optimal chart of diverting agent size combination was made under different reservoir temperatures. For the fracturing job, totally 2562m3 KCL weighted fracturing fluid and 159.2m3 ceramic proppant of 40-70 mesh were pumped. The operation parameters were in reasonable agreement with the design. The initial test production was 10 times higher than before. The experience gained in this case study has some guiding significance for improving the success rate of hydraulic fracturing treatments in the highly deviated ultra-deep well and for effectively developing such fractured tight sandstone reservoirs, both theoretically and practically.

2019 ◽  
Vol 59 (1) ◽  
pp. 166
Author(s):  
Mohammad Ali Aghighi ◽  
Raymond Johnson Jr. ◽  
Chris Leonardi

Improved hydraulic fracturing models can better inform operational decisions regarding production from low-permeability coals and ultimately convert currently classified contingent resources to reserves. Improving current modelling approaches requires identification and investigation of the challenges involved in modelling hydraulic fracture stimulation in complex eastern Australian cases where permeability systems and stress regimes can vary significantly. This study investigated differences among existing and emerging advanced hydraulic fracture models and codes including numerical methods used to model fluid and rock behaviours during treatments; the ability to contextualise structure, behaviour and interaction of natural fractures with the propagating hydraulic fracture (e.g. cleat or natural fracture fabric, discrete fracture networks and pressure-dependent leak-off); and their capabilities in handling simultaneously growing or complex fracture development. One finding is that the new generation of models or codes that fully or partially use particle-based numerical methods are more capable in handling complexities associated with hydraulic stimulation of naturally fractured reservoirs. However, the computational cost and time for these models may cause concerns, particularly when modelling large reservoirs and treatments. Based on these limitations, many of the advanced, industry preferred, commercial hydraulic fracture simulators still choose to incorporate limited complexities with regard to natural fractures or represent them mathematically or implicitly. This investigation also indicates that most emerging models provide better representation of natural fractures, visualisation and integration into workflows for completion or stimulation design.


2016 ◽  
Author(s):  
Peng Yi ◽  
Weng Dingwei ◽  
Xu Yun ◽  
Wang Liwei ◽  
Lu Yongjun ◽  
...  

2016 ◽  
Author(s):  
Ronald T. Green ◽  
◽  
F. Paul Bertetti ◽  
Nathaniel Toll ◽  
Nicola Hill

Sign in / Sign up

Export Citation Format

Share Document