lucaogou formation
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 68)

H-INDEX

20
(FIVE YEARS 6)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8450
Author(s):  
Xiaojun Zha ◽  
Fuqiang Lai ◽  
Xuanbo Gao ◽  
Yang Gao ◽  
Nan Jiang ◽  
...  

The shale oil reservoir of the Lucaogou Formation in the Jimsar Sag has undergone tectonic movement, regional deposition and complex diagenesis processes. Therefore, various reservoir space types and complex combination patterns of pores have developed, resulting in an intricate pore throat structure. The complex pore throat structure brings great challenges to the classification and evaluation of reservoirs and the efficient development of shale oil. The methods of scanning electron microscopy, high-pressure mercury injection, low-temperature adsorption experiments and thin-slice analysis were used in this study. Mineral, petrology, pore throat structure and evolution process characteristics of the shale oil reservoir were analyzed and discussed qualitatively and quantitatively. Based on these studies, the evolution characteristics and formation mechanisms of different pore throat structures were revealed, and four progressions were made. The reservoir space of the Lucaogou Formation is mainly composed of residual intergranular pores, dissolved pores, intercrystalline pores and fractures. Four types of pore throat structures in the shale oil reservoir of the Lucaogou Formation were quantitatively characterized. Furthermore, the primary pore throat structure was controlled by a sedimentary environment. The pores and throats were reduced and blocked by compaction and cementation, which deteriorates the physical properties of the reservoirs. However, the dissolution of early carbonate, feldspar and tuffaceous minerals and a small amount of carbonate cements by organic acids are the key factors to improve the pore throat structure of the reservoirs. The genetic evolution model of pore throat structures in the shale oil reservoir of the Lucaogou Formation are divided into two types. The large-pore medium-fine throat and medium-pore medium-throat reservoirs are mainly located in the delta front-shallow lake facies and are characterized by the diagenetic assemblage types of weak compaction–weak carbonate cementation–strong dissolution, early medium compaction–medium calcite and dolomite cementation–weak dissolution. The medium-pore fine throats and fine-pore fine throats are mainly developed in shallow lakes and semi-deep lakes. They are characterized by the diagenetic assemblage type of strong compaction–strong calcite cementation–weak dissolution diagenesis. This study provides a comprehensive understanding of the pore throat structure and the genetic mechanism of a complex shale oil reservoir and benefits the exploration and development of shale oil.


2021 ◽  
Vol 9 ◽  
Author(s):  
Senlin Yin ◽  
Baiyu Zhu ◽  
Youxin Wu ◽  
Feng Xu

As the controlling effect of complex lithofacies of lacustrine mixed fine-grained rocks on the shale oil sweet spot remains unclear, core, outcrop, general logging, nuclear magnetic resonance (NMR) logging, testing, and production data were used to study the types, combination pattern, and genesis of lithofacies architectures of lacustrine mixed fine-grained rocks in the study area by lithofacies hierarchy analysis, X-ray fluorescence (XRF) logging, UAV, and 3D geological modeling. The research shows that: 1) According to lithology and sedimentary structure, the mixed fine-grained rocks can be divided into 13 lithofacies types of different origins in 5 sub-categories and 2 categories. 2) UAV photography was combined with a traditional field survey to characterize the 3D spatial distribution of lithofacies architecture of the Lucaogou Formation on the outcrop, and it is found that the lithofacies architecture patterns of mixed fine-grained rocks include three types: gradual change type, abrupt change type, and special type. The gradual change type with higher sand development degree and symmetrical lithofacies architecture has a high quality reservoir with dissolution pores, and is mixed beach-bar sand in the mixed zone. It is high in development degree and often appears as several similar cycles stacking over each other. The abrupt change type can be subdivided into two sub-types, asymmetric and smaller in reservoir thickness. It is very high in development degree and often comes in several similar cycles. The special type belongs to thick clastic rock relatively independent in the mixed fine-grained rocks with a high development degree of sand. The sand is a higher quality reservoir with properties of tight reservoir. It often appears as stacking of single cycle sand. 3) The different lithofacies architectures in the mixed fine-grained rocks have significant differences in distribution. The gradual change type is mainly composed of mudstone, dolomitic siltstone, and sandy dolomite, dolomitic siltstone, and mudstone, and appears in lenticular shape overlapping with each other on the plane. The abrupt change type is made up of felsic siltstone, dolomitic siltstone, sandy dolomite, and mudstone, and appears as isolated thin layers on the plane. The special type is mainly composed of mudstone and felsic siltstone, and mudstone, and turns up as lenses of different sizes on the plane.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Chenjia Zhang ◽  
Jian Cao ◽  
Erting Li ◽  
Yuce Wang ◽  
Wenyao Xiao ◽  
...  

Fine-grained mixed rocks in saline lacustrine basins are important targets for shale oil exploration. However, the controls on shale oil accumulation are complex due to the multi-source mixed deposition. This is a challenging issue in the study of shale oil. Here, we present a case study in the Middle Permian Lucaogou Formation in the Jimusar Sag, Junggar Basin, northwestern China. Results show that the Lucaogou Formation consists mainly of carbonate rocks, dolomitic or calcareous mudstones, tuffaceous or silty mudstones, and siltstones. The dolomitic/calcareous mudstones ( TO C average = 6.44   wt . % ) and tuffaceous/silty mudstones ( TO C average = 4.83   wt . % ) have the best hydrocarbon generation potential and contain type I–II1 kerogens that are in the peak oil generation stage. However, the shale oil potential is highest for the carbonate rocks and siltstones with average oil saturation index (OSI) values of 315.03 mg HC/g TOC and 343.27 mg HC/g TOC, respectively. This indicates that hydrocarbon generation potential is not the main factor controlling shale oil potential. Micro-nanoscale pores are the main control. Abundant dissolution pores provide excellent reservoir space for near-source migration and accumulation of shale oil. Different mixing processes between lithofacies control the accumulation of shale oil, and shale oil productivity is the best when multi-facies deposition in transitional zones formed the mixed rocks (facies mixing). In addition, local accumulations of calcareous organisms and adjacent carbonate components on terrigenous sediments (in situ mixing) are also conducive to shale oil enrichment. This is an unusual and special feature of saline lacustrine shale oils, which is different from freshwater lacustrine and marine shale oils. Comprehensive assessment of source rock and reservoir is needed to robustly establish a widely applicable method to determine the shale oil potential in such basins.


2021 ◽  
pp. 105406
Author(s):  
Yongshuai Pan ◽  
Zhilong Huang ◽  
Xiaobo Guo ◽  
Rui Wang ◽  
Gary G. Lash ◽  
...  

2021 ◽  
pp. 014459872110427
Author(s):  
Haiguang Wu ◽  
Junjun Zhou ◽  
Wenxuan Hu ◽  
Funing Sun ◽  
Xun Kang ◽  
...  

Authigenic albites occur widely in clastic reservoirs with important implications for diagenesis and reservoir formation. The middle Permian Lucaogou Formation in the Jimusaer Sag (Junggar Basin, NW China), where major exploration breakthroughs in shale oil have been achieved, reveals a new phenomenon that authigenic albites are abundant in unique mixed carbonate–volcanic–clastic sequences. This has not been reported in the literatures. To fill the knowledge gap, the origin of these authigenic albites and their relationship with dissolution pores (i.e. diagenesis implications) were investigated. Results show that two types (I and II) of authigenic albite were identified within the shale oil reservoirs. Euhedral Type I authigenic albites with 3–10 μm only occur in dolarenite intraclasts and are symbiotic with amorphous dolomite minerals with a pure chemical composition of >99% albite-end-member content. Larger Type II authigenic albites with 10–50 μm are widely distributed in reservoirs, primarily in dissolution pores, and coexist with authigenic dolomite minerals or dolomite overgrowths. Their chemical composition is less pure with anorthite-end-member contents that range from undetectable to 9.77%, with an average of 1.34%. A symbiotic relationship, pure chemical composition, size, and euhedral morphology indicate that Type I authigenic albites precipitated during syngenetic hydrothermal action. However, the morphology of dissolution pores, residual symbiotic “orthoclase”, impure chemical composition and carbon–oxygen isotope indicate that Type II were the products of the dissolution and reprecipitation of “perthite” crystal pyroclasts influenced by acid organic fluids in latter diagenesis. The differential dissolution of “orthoclase” and “albite” components in “perthite” crystal pyroclasts formed enormous intergranular secondary pores in the presence of dolomite minerals in the shale oil reservoirs.


Sign in / Sign up

Export Citation Format

Share Document