Fracture Geometry Calibration Using Multiple Surveillance Techniques

2022 ◽  
Author(s):  
Musallam Jaboob ◽  
Ahmed Al Shueili ◽  
Hussien Al Salmi ◽  
Salim Al Hajri ◽  
German Merletti ◽  
...  

Abstract An accurate Mechanical Earth Model (MEM) is of vital importance in tight gas reservoirs where hydraulic fracturing is the only way to produce hydrocarbons economically. The Barik tight gas reservoir is the main target in Khazzan and Ghazeer Fields at the Sultanate of Oman (Rylance et al., 2011). This reservoir consists of multiple low-permeability sandstone layers interbedded with marine shales. A good understanding of the fracture propagation in such a reservoir has a major effect on completion and fracturing design. The MEM derived from sonic logs and calibrated with core data needs to be further validated by independent measurements of the fracturing geometry. Multiple surveillance techniques have been implemented in the Barik reservoir to validate the MEM and to match observations from hydraulic fracturing operations. These techniques include closure interpretation using a wireline deployed formation testing assembly, the use of mini-frac injection tests with deployed bottomhole pressure gauges, execution of post injection time-lapse temperature logging, the injection of radioactive tracers, associated production logging, subsequent pressure transient analysis and other techniques. A cross-disciplinary team worked with multiple sources of data to calibrate the MEM with the purpose of delivering a high-confidence prediction of the created fracture geometry, which honors all available surveillance data. In turn, this validation approach provided a solid basis for optimization of the completion and fracturing design, in order to optimally exploit this challenging reservoir and maximize the economic returns being delivered. For example, combination of stress testing with radioactive tracers provided confidence in stress barriers in this multilayered reservoir. Pressure transient analysis allowed to calibrate mechanical model to match fracturing half-length that is contributing to production. This paper provides extensive surveillance examples and workflows for data analysis. Surveillance of this degree in the same well is uncommon because of the associated time and cost. However, it provides unique value for understanding the target reservoir. This paper demonstrates the Value Of Information (VOI) that can be associated with such surveillance and provides a concrete and practical example that can be used for the justification of future surveillance programs associated with the hydraulic fracturing operations.

2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Erdal Ozkan

Abstract Pressure-transient analysis (PTA) is widely used in the industry to estimate fracture half-length, height, and skin due to hydraulic fracturing as well as reservoir parameters. PTA studies focus on pressure data from long shut-in periods and diagnostic fracture injection tests (DFITs), while analyzing the pressure data recorded during the hydraulic fracture treatment has been overlooked. This paper details the state-of-the-art in applying pressure transient analysis to better estimate hydraulic fracture conductivity and dimensions and improve treatment designs stage by stage. The initial portion of this paper describes the application of a novel and low-cost diagnostic method for post-fracture analysis. The bulk of the paper is dedicated to present case histories that illustrate the PTA of the recorded pressure data during treatment to obtain estimates of fracture dimensions and conductivity. The pressure recorded during each stage is processed to ensure the proper data quality and the pressure falloff at the end of the stage is filtered out. The pressure is then analyzed for multi-cluster, finite-conductivity fractures, to obtain the fracture half-length, conductivity, and leakoff. Calculated parameters from each stage are compared to provide insights into the hydraulic fracture design and confirm the adequacy of the treatment design along the well. The results from stage leakoff pressure analysis are very valuable in confirming relative fracture conductivity and providing a qualitative measure of fracture length and height. The total stimulated reservoir area (SRA) calculated using the proposed method yields comparable values to SRA obtained from buildup analysis. The information provided is as valuable and comparable as that from direct near-wellbore diagnostics, such as radioactive traces, temperature logging, real-time micro-seismic monitoring, and production logging. The paper proposes a novel, low-cost analytical PTA method for estimating fracture dimensions, skin, and leakoff coefficient. We illustrate – with several field cases – that conventional post-fracture techniques can be integrated with the stage by stage PTA analysis to provide not only a more consistent and systematic analysis but also a more accurate assessment of treatment effectiveness. The findings of this paper help improve the efficiency of multistage hydraulic fracturing stimulation of horizontal wells.


SPE Journal ◽  
2016 ◽  
Vol 22 (03) ◽  
pp. 924-939 ◽  
Author(s):  
Youwei He ◽  
Shiqing Cheng ◽  
Shuang Li ◽  
Yao Huang ◽  
Jiazheng Qin ◽  
...  

Summary The increasing activities in tight reservoir exploitation through fractured wells have attracted interests of pressure-transient analysis (PTA) for well-performance evaluation. The production rates of different fractures were assumed to be equal in previous models. However, different fractures have unequal contributions to the total-gas-production rate because of the differences of fracture scale (e.g., half-length, height), heterogeneity of gas saturation, formation damage, and fracture closure. This paper considers the effect of unequal gas-production rate of each fracture (UGPREF) on pressure-transient behaviors, and develops a semianalytical methodology to diagnose the specific locations of underperforming fractures through PTA by use of bottomhole-pressure (BHP) data. First, new semianalytical solutions of a multifractured horizontal well (MFHW) in a tight gas reservoir are derived on the basis of the Green function (Gringarten and Ramey 1973) and Newman product method (Newman 1936). Second, the model is validated by comparison with the numerical model in KAPPA Ecrin (Saphir) software (Essca 2011). Third, type curves are developed, and sensitivity analysis is further investigated. Results show that there exist clear distinctions among these type curves between equal gas-production rate of each fracture (EGPREF) and UGPREF. The early radial flow is distinguishable and behaves as a horizontal line with the value of 0.5/N* (N* = N for EGPREF, N*≠N for UGPREF) in the pseudopressure-derivative curves when the interferences between fractures do not overlap this period. If the early-radial flow was mistakenly regarded as pseudoradial flow, the interpreted permeability would be N* times smaller than the accurate result. Furthermore, the methodology is applied to a field case of the Daniudi tight gas reservoir in the Ordos Basin, which illustrates its physical consistency and practicability to diagnose the specific locations of underperforming hydraulic fractures through pressure-history matching. It also provides feasible references for reservoir engineers in well-performance evaluation and field strategy (e.g., refracturing, acidizing, or other stimulation treatments) to enhance hydrocarbon production.


Sign in / Sign up

Export Citation Format

Share Document