Screening of Surfactants for Huff-N-Puff Injection into Unconventional Reservoirs

2021 ◽  
Author(s):  
Alexandra Scerbacova ◽  
Anastasia Ivanova ◽  
Elena Mukhina ◽  
Alexandra Ushakova ◽  
Mikhail Bondar ◽  
...  

Abstract The gradual depletion of conventional oil reserves and the growing demand for hydrocarbon feedstock have led to shale deposits development necessity, which are characterized by high reservoir temperatures and very low permeabilites. One of the methods proposed for unconventional reservoirs development is surfactant injection in huff-n-puff mode. Unlike surfactant flooding, where the main effect is achieved through the displacement mechanism, the huff-n-puff method is based on capillary imbibition. Surfactant solutions decrease oil-water interfacial tension, change rock surface wettability to water-wet, lead to desorption of adsorbed hydrocarbons and increase relative permeability to water, thus increasing oil production. A number of commercially available anionic and nonionic surfactants were selected for laboratory investigation. Compatibility with reservoir fluids and thermal stability were tested for 14 days. For the stable compositions, the interfacial tension at the boundary with oil was measured with the spinning drop method. Special attention was paid to the study of initial reservoir wettability and the ability of the selected surfactants to shift it towards water-wet. Wettability at the macro level was determined by the "sessile" drop method. As a result of the screening, two surfactant compositions capable to alter the wettability of the rock surface to strictly water-wet were selected, as this is the key point when selecting surfactant compositions for low-permeable reservoirs. The optimum operating concentrations were selected to avoid the formation of a Winsor III microemulsion, which can lead to plugging of narrow channels and fluid flow blockage in the formation. Values of static adsorption onto crushed rock were also evaluated. The most effective composition was investigated in a huff-n-puff filtration experiment and positive results were obtained. Nanoparticles were also screened as potential components of surfactant compositions. It was found that nanoparticles forming stable dispersions in surfactant solutions improve their ability to change the wettability to a water-wet state. As a result of the laboratory work performed, it can be concluded that the huff-n-puff technology is applicable in unconventional reservoirs with very low permeabilities. The huff-n-puff mode for surfactant solutions injection is preferable due to lower surfactant consumption, targeted effect, and shortened well response time. Successful implementation of this technology on an industrial scale can improve the efficiency of shale oil production.

Author(s):  
H. Samara ◽  
T. V. Ostrowski ◽  
F. Ayad Abdulkareem ◽  
E. Padmanabhan ◽  
P. Jaeger

AbstractShales are mostly unexploited energy resources. However, the extraction and production of their hydrocarbons require innovative methods. Applications involving carbon dioxide in shales could combine its potential use in oil recovery with its storage in view of its impact on global climate. The success of these approaches highly depends on various mechanisms taking place in the rock pores simultaneously. In this work, properties governing these mechanisms are presented at technically relevant conditions. The pendant and sessile drop methods are utilized to measure interfacial tension and wettability, respectively. The gravimetric method is used to quantify CO2 adsorption capacity of shale and gas adsorption kinetics is evaluated to determine diffusion coefficients. It is found that interfacial properties are strongly affected by the operating pressure. The oil-CO2 interfacial tension shows a decrease from approx. 21 mN/m at 0.1 MPa to around 3 mN/m at 20 MPa. A similar trend is observed in brine-CO2 systems. The diffusion coefficient is observed to slightly increase with pressure at supercritical conditions. Finally, the contact angle is found to be directly related to the gas adsorption at the rock surface: Up to 3.8 wt% of CO2 is adsorbed on the shale surface at 20 MPa and 60 °C where a maximum in contact angle is also found. To the best of the author’s knowledge, the affinity of calcite-rich surfaces toward CO2 adsorption is linked experimentally to the wetting behavior for the first time. The results are discussed in terms of CO2 storage scenarios occurring optimally at 20 MPa.


1952 ◽  
Vol 5 (2) ◽  
pp. 331 ◽  
Author(s):  
WW Mansfield

Interfacial tension values occurring during the transfer of oleic acid from paraffin oil to aqueous alkali have been determined by the sessile-drop method. It is postulated that the ease of emulsification observed with these systems arises from the nature of the changes In interfacial tension associated with the transfer.


1992 ◽  
Vol 8 (03) ◽  
pp. 413-417
Author(s):  
Zhang Yu-Fu ◽  
◽  
Zhu Bu-Yao ◽  
Zhao Guo-Xi

2021 ◽  
pp. 2100972
Author(s):  
Bangyong Sun ◽  
Yi Zhao ◽  
Qiang Zhao ◽  
Gang Li

Sign in / Sign up

Export Citation Format

Share Document