Carbonate Reservoir Characterization with High-Resolution Logging-While-Drilling Dual-Images in Oil-Based Mud

2021 ◽  
Author(s):  
Shiduo Yang ◽  
Thilo M. Brill ◽  
Alexandre Abellan ◽  
Chandramani Shrivastava ◽  
Sudipan Shasmal

Abstract Fracture evaluation and vuggy feature understanding are of prime importance in carbonate reservoirs. Commonly the related features are extracted from high resolution borehole images in water-based mud environments. To reduce the formation damage from drilling fluids, many wells are drilled with oil-based muds (OBM) in carbonate reservoirs. There are no appropriate measurements to resolve the reservoir characterization in OBM with the existing technologies in horizontal wells—especially in real-time—to make decisions at an early stage. In this paper, we would like to introduce a workflow for geological characterization using a new dual-images logging while drilling tool in oil-based mud. This new tool provides high resolution resistivity and ultrasonic images at the same time. Structural features, such as bedding boundaries, faults, fractures can be identified efficiently from resistivity images; while detailed sedimentary features, for example, cross beddings, vugs, stylolite are easily characterized using ultrasonic images. Benefiting from the dual images, an innovative workflow was proposed to estimate the vug feature more accurately; and the fractures can be identified from images and classified based on tool measurement principles. One case study from the Middle East demonstrated the benefits of this new measurement. A near well structure model was constructed from bed boundaries picked from borehole images. The fractures were picked and classified confidently using the dual images. Additionally, fracture density statistics are available along the well trajectory. The vug features were extracted efficiently, which indicates the secondary porosity development information. Rock typing is achieved by combining fracture and vug analysis to provide zonation for completion and production stimulation. The dual-images provide the capability for geological characterization in carbonate reservoir in an oil-based mud environment. The image-based rock typing helps segment the drain-hole for completion and production stimulation. The reservoir mapping with rock typing provides detailed information for in-filling well design.

2012 ◽  
Vol 31 (2) ◽  
pp. 168-179 ◽  
Author(s):  
Xukui Feng ◽  
Yanfeng Wang ◽  
Xuejun Wang ◽  
Naijian Wang ◽  
Guocheng Gao ◽  
...  

2021 ◽  
Author(s):  
Manabesh Chowdhury ◽  
Arun Babu Nalamara ◽  
VR Sunder ◽  
Pankaj Kumar ◽  
Pinakadhar Mohapatra ◽  
...  

Abstract D31 cluster is located in the prolific Mumbai Offshore Basin, Western part of India. B-192Afield is part of this cluster, where Bassein (Middle Eocene),Mukta and Panvel (Early Oligocene)Formations are the main reservoirs. The reservoirs are complex in terms of reservoir heterogeneity. They were deposited in a shallow marine carbonate platform.Sea level fluctuations andchange in depositional environment impacted the porosity development. The main objective of this study was to integrate spectral gamma ray signatures with seismic interpretation for demarcating significant stratigraphic surfaces and differentiating depositional environments for robust reservoir characterization. Regionally, Bassein Formation (Middle Eocene) is characterized by thick foraminiferal and algal wackestone, packstone and occasional grainstone facies.The Mukta Formation (Early Oligocene),which unconformably overlies the Bassein Formation, is characterized by presence of fossiliferous limestone with shale intercalations. In the present study, data from four exploration wells data have been analyzed, where spectral gamma ray log patterns in carbonate reservoirs appear to have a distinctive relationship to depositional facies and stratigraphic surfaces in the Bassein and Mukta Formations. Different cross plots have also been utilized for analyzing the depositional conditions (i.e. oxic or anoxic).Later, the spectral log interpretations have been integrated with seismic interpretation. This study is part of a larger effort for reservoir characterization, as a basis for seismic interpretation and integrated reservoir modelling. The spectral gamma ray signatures demarcated significant stratigraphic surfaces. In BasseinFormation, three different units have been marked as Upper, Middle and Lower Bassein. The major lithological boundary between the Bassein and Mukta Formation is also well demarcated with spectral GR signature. The carbonate strata of Bassein & Mukta Formation have also been subdivided with U-Th-K abundance.The "Low Th-Low U" units indicative of pure carbonate and deposition in oxidizing environment whereas "Low Th-High U"is indicative ofreducing environment, which gave a relative sea level fluctuation in the area.The major stratigraphic boundaries identified from these spectral GR logs has been incorporated in the seismicinterpretation and used for regional seismic mapping.As porosity development is governed by thesea level fluctuations,this study also gave an indication of the possibility of porous zonein the reservoir section. These results can be useful as a basis for applying spectral GR signature as a tool for stratigraphic interpretation in un-cored heterogenous carbonate sections. Along with the petrophysical interpretation, integration of core analysis, biostratigraphy and seismic attribute are critical for detailed carbonate reservoir characterization incorporating depositional environment.This approach can be applied to support commercial development of the complex carbonate reservoirs.


2021 ◽  
Author(s):  
Dian Permanasari ◽  
Zeindra Ernando ◽  
Taufik B Nordin ◽  
Azlan Shah B Johari ◽  
Fierzan Muhammad

Abstract Carbonate environments are complex by nature and the characterization, based on their petrophysical properties, has always been challenging due to the pore heterogeneity. In this paper, we present the integration of factor analysis applied to while-drilling Nuclear Magnetic Resonance (NMR) data, full-suite data from a multifunction logging-while-drilling (LWD) tool, and modeling of the NMR T2 transverse relaxation time to improve the fluid typing interpretation in complex carbonate reservoirs. The interpretation results are essential for perforation and completion decisions in a high-angle development well. The carbonate reservoirs in this case study are within the Kujung formation in the East Java Basin. Kujung I is a massive carbonate reservoir with abundant secondary porosity, while Kujung II and III consist of interbedded thin carbonate reservoirs and shale layers. High uncertainty in identifying the fluid type existed in the Kujung II and III formations due to the presence of multiple fluids in the reservoir, the effect of low water salinity, as well as pore heterogeneity and diagenesis. Due to the high-angle well profile, LWD tool conveyance became the primary method for data acquisition. NMR while drilling and multifunction LWD tools were run on the same drilling bottomhole assembly (BHA) to provide complete formation evaluation and fluid identification. The NMR factor analysis technique was used to decompose the T2 distribution into its porofluid constituents. Thorough T2 peaks modeling was performed to interpret the fluid signatures from the factor analysis results. Borehole images, caliper, triple-combo, density-magnetic resonance gas corrected porosity (DMRP), as well as time-lapse data were evaluated to identify the presence of secondary porosity and narrow down the T2 fluid signatures interpretation. Each of the porofluid signatures were identified and validated in the Kujung I formation with its proven gas and thick water zone. These signatures were then used as references to interpret the fluid types in the Kujung II and III formations. Gas was identified by a low-amplitude peak in the shorter T2 range between 400 ms to 1 s. Oil or synthetic oil-based mud (SOBM) filtrate was indicated by a high-amplitude peak in the longer T2 range (>1.5 s). The water signatures are very much dependent on the underlying pore sizes. Larger pore sizes will generate longer T2 values, which could fall into the same T2 range as hydrocarbon. For that reason, it is important to combine the NMR porofluid signatures interpretation with other LWD data to restrict the fluid type possibilities. This integrated methodology has successfully improved the fluid type interpretation in the Kujung II and III thin carbonate reservoir targets and was confirmed by the actual production results from the same well. This case study presents excellent integration of LWD NMR with other LWD data to reduce fluid type uncertainties in complex carbonate reservoirs, which were unresolved by conventional interpretation methods. Based on this success, a similar integrated NMR factor analysis method can be applied to future development wells in the same field.


Sign in / Sign up

Export Citation Format

Share Document