Flow Unit Characterization aided by Quantified Secondary Porosity Result from High Resolution LWD Images in Heterogeneous Carbonate Reservoir; A Novel Approach

Author(s):  
Yogesh Bahukhandi ◽  
Somenath Kar ◽  
Chandan Majumdar ◽  
Dipanka Behari Roy ◽  
U.C. Bhatt
2021 ◽  
Author(s):  
Shiduo Yang ◽  
Thilo M. Brill ◽  
Alexandre Abellan ◽  
Chandramani Shrivastava ◽  
Sudipan Shasmal

Abstract Fracture evaluation and vuggy feature understanding are of prime importance in carbonate reservoirs. Commonly the related features are extracted from high resolution borehole images in water-based mud environments. To reduce the formation damage from drilling fluids, many wells are drilled with oil-based muds (OBM) in carbonate reservoirs. There are no appropriate measurements to resolve the reservoir characterization in OBM with the existing technologies in horizontal wells—especially in real-time—to make decisions at an early stage. In this paper, we would like to introduce a workflow for geological characterization using a new dual-images logging while drilling tool in oil-based mud. This new tool provides high resolution resistivity and ultrasonic images at the same time. Structural features, such as bedding boundaries, faults, fractures can be identified efficiently from resistivity images; while detailed sedimentary features, for example, cross beddings, vugs, stylolite are easily characterized using ultrasonic images. Benefiting from the dual images, an innovative workflow was proposed to estimate the vug feature more accurately; and the fractures can be identified from images and classified based on tool measurement principles. One case study from the Middle East demonstrated the benefits of this new measurement. A near well structure model was constructed from bed boundaries picked from borehole images. The fractures were picked and classified confidently using the dual images. Additionally, fracture density statistics are available along the well trajectory. The vug features were extracted efficiently, which indicates the secondary porosity development information. Rock typing is achieved by combining fracture and vug analysis to provide zonation for completion and production stimulation. The dual-images provide the capability for geological characterization in carbonate reservoir in an oil-based mud environment. The image-based rock typing helps segment the drain-hole for completion and production stimulation. The reservoir mapping with rock typing provides detailed information for in-filling well design.


2018 ◽  
Vol 3 (2) ◽  
pp. 93-100
Author(s):  
Abdul Haris ◽  
Agus Riyanto ◽  
Tri Aji Adi Harsanto ◽  
Ambar Rachmanto ◽  
Adang Sukmatiawa

In the last few years, the use of flow unit technique in the oil and gas industry has shown a great deal of success. Porosity and permeability from wire-line log and special core data analysis (SCAL) along with its cementation exponent value were integrated to characterize the reservoir in terms of pore volume caused by facies changing. In this work, we determine flow unit of the carbonate reservoir, which is applied to the Northwest Java Basin Field, Indonesia by performing the flow unit analysis, which allows approximating absolute permeability. Furthermore, the quantity and the flow unit of the reservoir rock is also determined to identify the secondary porosity. To reduce the level of uncertainty, wire-line logs data were validated with core data before it is used to interpret the reservoir. Subsequently, the result can be extrapolated to un-cored wells. Our experiment shows that flow units can be determined reliably from the integration between porosity and permeability, which have defined two different rock types in term of flow unit zone. The correlation of the flow units between wells leads to the definition of reservoir quality.


Author(s):  
Abdallah Naser ◽  
Ahmad Lotfi ◽  
Joni Zhong

AbstractHuman distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people’s privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of $$\pm 0.2$$ ± 0.2  m in continuous-based estimation and $$96.8\%$$ 96.8 % achieved-accuracy in discrete distance estimation.


Author(s):  
Marta M. Civitani ◽  
Stefano Basso ◽  
Salvatore Incorvaia ◽  
Luigi Lessio ◽  
Giovanni Pareschi ◽  
...  
Keyword(s):  
X Ray ◽  

1992 ◽  
Author(s):  
J. M. Harris ◽  
Richard Nolen‐Hoeksema ◽  
J. W. Rector ◽  
M. Van Schaack ◽  
S. K. Lazaratos

Sign in / Sign up

Export Citation Format

Share Document