Reservoir Characterization, Fracture Mapping, and Well Placement Using a Suite of Logging-While-Drilling Images with Multiple Resolutions in a Marginal, Middle East Carbonate Reservoir

Author(s):  
Khadeejah Ahmed Al Daghar ◽  
Tarek Mohamed Ihab ◽  
Raza Hassan Sayed ◽  
Atef Farouk Abdelaal ◽  
Luis A. Ramos ◽  
...  
2021 ◽  
Author(s):  
Shiduo Yang ◽  
Thilo M. Brill ◽  
Alexandre Abellan ◽  
Chandramani Shrivastava ◽  
Sudipan Shasmal

Abstract Fracture evaluation and vuggy feature understanding are of prime importance in carbonate reservoirs. Commonly the related features are extracted from high resolution borehole images in water-based mud environments. To reduce the formation damage from drilling fluids, many wells are drilled with oil-based muds (OBM) in carbonate reservoirs. There are no appropriate measurements to resolve the reservoir characterization in OBM with the existing technologies in horizontal wells—especially in real-time—to make decisions at an early stage. In this paper, we would like to introduce a workflow for geological characterization using a new dual-images logging while drilling tool in oil-based mud. This new tool provides high resolution resistivity and ultrasonic images at the same time. Structural features, such as bedding boundaries, faults, fractures can be identified efficiently from resistivity images; while detailed sedimentary features, for example, cross beddings, vugs, stylolite are easily characterized using ultrasonic images. Benefiting from the dual images, an innovative workflow was proposed to estimate the vug feature more accurately; and the fractures can be identified from images and classified based on tool measurement principles. One case study from the Middle East demonstrated the benefits of this new measurement. A near well structure model was constructed from bed boundaries picked from borehole images. The fractures were picked and classified confidently using the dual images. Additionally, fracture density statistics are available along the well trajectory. The vug features were extracted efficiently, which indicates the secondary porosity development information. Rock typing is achieved by combining fracture and vug analysis to provide zonation for completion and production stimulation. The dual-images provide the capability for geological characterization in carbonate reservoir in an oil-based mud environment. The image-based rock typing helps segment the drain-hole for completion and production stimulation. The reservoir mapping with rock typing provides detailed information for in-filling well design.


2021 ◽  
Author(s):  
Raymond Nguyen ◽  
Antoine Jacques ◽  
Vincent Jaffrezic ◽  
Yann Bigno ◽  
Amr Mohamed Serry ◽  
...  

Abstract The development of carbonate reservoirs of a giant field, Offshore Abu Dhabi, requires long horizontal wells to maximize productivity, but at the risk of unwanted gas and water channeling through its inherent heterogeneities. Conformance can be enhanced with dedicated segmented completions (blank sections, Inflow Control Device, Autonomous Inflow Control Device, etc.) or selective acid stimulation (diverter, Limited Entry Liner), which are increasingly implemented to extend well life, and eventually well value. If these technologies have matured, success depends heavily on the quality of the formation knowledge prior to completion. As of today, conventional logs provide the basic ground, but they lack dynamic information, whereas production logging results are obtained too late, when the well is already completed. Initially introduced for the optimization of unconventional well completions (see Jacques et al, URTEC 2019), the Well Testing Logging (WTLog) offers the advantage to record a log of mobility, at the end of drilling the openhole, enabling a favorable timing to influence adapted completion and stimulation design. Contrasted viscosity brines are sequentially circulated through the drill pipes at a constant rate and back-produced from the casing at constant pressure. The fluids interface travels in the drain from the TD to the casing shoe, and the measurement of the differential formation seepage is interpreted into an injectivity profile. Combined with rate fall-off phase analysis, permeability and skin logs are derived. Lasting a few hours and realized with conventional rig equipment (such as cement pumps, coriolis flowmeters, Managed Pressure Drilling system), it is a nonintrusive, safe, and ultimately low-cost operation. Forward, it can replace costly logging, when aimed at characterizing heterogeneities. Within a year, the two first WTLog pilots of the Middle East were successfully designed and carried out. They targeted two appraisal wells in distinct undeveloped reservoirs (Cretaceous and Upper Jurassic formations) which benefited from rich acquisition programs (Image log, Production log) to benchmark and qualify this technology. After an explanation of the technology principles, this paper describes the design, operations, and results of these pilots. It then focuses on the petrophysical consolidation of the matrix/fracture characterization. It concludes by sharing the learnings and offers insight to what extent it is a promising technology to be applied in Middle East carbonate reservoir developments.


Sign in / Sign up

Export Citation Format

Share Document