Case Study of a Novel Autonomous Real-Time Monitoring, Control and Analysis System, to Maximize Production Uptime on Sustained Annulus Pressure Wells, While Improving HSE and Compliance with Double Barrier Well Integrity Policies

2021 ◽  
Author(s):  
Rylan Paul Dsouza ◽  
Rachelle Christine Cornwall ◽  
Alan David Brodie ◽  
Pedro Patela ◽  
Hamdi Bouali Daghmouni ◽  
...  

Abstract This paper describes an innovative solution for the safe and effective management of wells with unplanned sustained annulus pressure (SAP). The solution restores double barrier integrity in the well and provides reliable real time annulus pressure and temperature data. It also has the functionality to autonomously bleed-off the annulus pressure at a pre-determined set point. As a result, the nature and severity of the SAP can be better understood, and in many cases wells that would otherwise have been closed in awaiting workover can remain in production.

2016 ◽  
Author(s):  
Nasser M. Al-Hajri ◽  
Mohammed D. Al-Ajmi ◽  
Fehead M. Al-Subaie ◽  
Andre Hognestad ◽  
Erik Johannessen
Keyword(s):  

Author(s):  
Sviatoslav Pelipenko ◽  
Nicolas C. Flamant ◽  
Simon C. Impey

Abstract Proper control of downhole pressure during cementing operations is critical to maintaining well integrity, i.e. avoiding getting a well kick or fracturing the formation. Contrary to drilling operations where pressure can be monitored in real time thanks to measurement while drilling by downhole tools, no such measurements are available while cementing. Cementing operations must therefore rely on the use of simulations to estimate pressures downhole and ensure that the well integrity is not compromised. These simulations are typically performed ahead of the operations, but for critical wells it is paramount to also perform the calculations in real time to account for any deviation from the plan. We will first provide a description of the hydraulics simulator used for real time simulations. A key feature is the ability to account for fluctuations in injected fluid density, as a result of the cement slurry mixing process. This effectively results in tracking a high number of fluids with different density properties. The simulator also takes into account fluid compressibility and pressure and temperature dependent fluid viscosity, the magnitude of the effects of which we examine in application to generic field cases. Another salient feature of the simulator is its ability to determine whether fluid is lost to the formation by using flow returning from the well as an additional input. We highlight the work accomplished to achieve the performance required for real time computations and then illustrate how the simulator gets used during operation through a case study.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 331-336 ◽  
Author(s):  
Gabriela Weinreich ◽  
Wolfgang Schilling ◽  
Ane Birkely ◽  
Tallak Moland

This paper presents results from an application of a newly developed simulation tool for pollution based real time control (PBRTC) of urban drainage systems. The Oslo interceptor tunnel is used as a case study. The paper focuses on the reduction of total phosphorus Ptot and ammonia-nitrogen NH4-N overflow loads into the receiving waters by means of optimized operation of the tunnel system. With PBRTC the total reduction of the Ptot load is 48% and of the NH4-N load 51%. Compared to the volume based RTC scenario the reductions are 11% and 15%, respectively. These further reductions could be achieved with a relatively simple extension of the operation strategy.


Sign in / Sign up

Export Citation Format

Share Document