Some Aspects of Seismic Data Reverse Time Migration for Salt Tectonics Geology of the Dnieper-Donets Basin

2021 ◽  
Author(s):  
Pavlo Kuzmenko ◽  
Viktor Buhrii ◽  
Carlo D'Aguanno ◽  
Viktor Maliar ◽  
Hrigorii Kashuba ◽  
...  

Abstract Processing of the seismic data acquired in areas of complex geology of the Dnieper-Donets basin, characterized by the salt tectonics, requires special attention to the salt dome interpretation. For this purpose, Kirchhoff Depth Imaging and Reverse Time Migration (RTM) were applied and compared. This is the first such experience in the Dnieper-Donets basin. According to international experience, RTM is the most accurate seismic imaging method for steep and vertical geological (acoustic contrast) boundaries. Application of the RTM on 3D WAZ land data is a great challenge in Dnieper-Donets Basin because of the poor quality of the data with a low signal-to-noise ratio and irregular spatial sampling due to seismic acquisition gaps and missing traces. The RTM algorithm requires data, organized to native positions of seismic shots. For KPSDM we used regularized data after 5D interpolation. This affects the result for near salt reflection. The analysis of KPSDM and RTM results for the two areas revealed the same features. RTM seismic data looked more smoothed, but for steeply dipping reflections, lateral continuity of reflections was much improved. The upper part (1000 m) of the RTM has shadow zones caused by low fold. Other differences between Kirchhoff data and RTM are in the spectral content, as the former is characterized by the full range of seismic frequency spectrum. Conversely, beneath the salt, the RTM has reflections with steep dips which are not observed on the KPSDM. It is possible to identify new prospects using the RTM seismic image. Reverse Time Migration of 3D seismic data has shown geologically consistent results and has the potential to identify undiscovered hydrocarbon traps and to improve salt flank delineation in the complex geology of the Dnieper-Donets Basin's salt domes.

Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. WA123-WA145 ◽  
Author(s):  
Ivan Vasconcelos

Novel technologies in seismic data acquisition allow for recording full vector-acoustic (VA) data: pointwise recordings of pressure and its multicomponent gradient, excited by pressure only as well as dipole/gradient sources. Building on recent connections between imaging and seismic interferometry, we present a wave-equation-based, nonlinear, reverse-time imaging approach that takes full advantage of dual-source multicomponent data. The method’s formulation relies on source-receiver scattering reciprocity, thus making proper use of VA fields in the wavefield extrapolation and imaging condition steps in a self-consistent manner. The VA imaging method is capable of simultaneously focusing energy from all in- and outgoing waves: The receiver-side up- and downgoing (receiver ghosts) fields are handled by the VA receiver extrapolation, whereas source-side in- and outgoing (source ghosts) arrivals are accounted for when combining dual-source data at the imaging condition. Additionally, VA imaging handles image amplitudes better than conventional reverse-time migration because it properly handles finite-aperture directivity directly from dual-source, 4C data. For nonlinear imaging, we provide a complete source-receiver framework that relies only on surface integrals, thus being computationally applicable to practical problems. The nonlinear image can be implicitly interpreted as a superposition of several nonlinear interactions between scattering components of data with those corresponding to the extrapolators (i.e., to the model). We demonstrate various features of the method using synthetic examples with complex subsurface features. The numerical results show, e.g., that the dual-source, VA image retrieves subsurface features with “super-resolution”, i.e., with resolution higher than the limits of Born imaging, but at the cost of introducing image artifacts not present in the linear image. Although the method does not require any deghosting as a preprocessing step, it can use separated up- and downgoing fields to generate independent subsurface images.


2017 ◽  
Vol 10 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Zhiming Chen ◽  
Guanghui Huang

AbstractWe propose a reliable direct imaging method based on the reverse time migration for finding extended obstacles with phaseless total field data. We prove that the imaging resolution of the method is essentially the same as the imaging results using the scattering data with full phase information when the measurement is far away from the obstacle. The imaginary part of the cross-correlation imaging functional always peaks on the boundary of the obstacle. Numerical experiments are included to illustrate the powerful imaging quality


2021 ◽  
Author(s):  
Hala Alqatari ◽  
Thierry-Laurent Tonellot ◽  
Mohammed Mubarak

Abstract This work presents a full waveform sonic (FWS) dataset processing to generate high-resolution images of the near-borehole area. The dataset was acquired in a nearly horizontal well over a distance of 5400 feet. Multiple formation boundaries can be identified on the final image and tracked at up to 200 feet deep, along the wellbore's trajectory. We first present a new preprocessing sequence to prepare the sonic data for imaging. This sequence leverages denoising algorithms used in conventional surface seismic data processing to remove unwanted components of the recorded data that could harm the imaging results. We then apply a reverse time migration algorithm to the data at different processing stages to assess the impact of the main processing steps on the final image.


2020 ◽  
pp. 1-40
Author(s):  
Xinru Mu ◽  
Jianping Huang ◽  
Liyun Fu ◽  
Shikai Jian ◽  
Bing Hu ◽  
...  

The fault-karst reservoir, which evolved from the deformation and karstification of carbonate rock, is one of the most important reservoir types in western China. Along the deep-seated fault zones, there are a lot widely spread and densely distributed fractures and vugs. The energy of the diffractions generated by heterogeneous structures, such as faults, fractures and vugs, are much weaker than that of the reflections produced by continuous formation interface. When using conventional full wavefield imaging method, the imaging results of continuous layers usually cover small-scale heterogeneities. Given that, we use plane-wave destruction (PWD) filter to separate the diffractions from the full data and image the separated diffractions using least-squares reverse time migration (LSRTM) method. We use several numerical examples to demonstrate that the newly developed diffractions LSRTM (D-LSRTM) can improve the definition of the heterogeneous structures, characterize the configuration and internal structure of the fault-karst structure well and enhance the interpretation accuracy for fault-karst reservoir.


2016 ◽  
Vol 24 (02) ◽  
pp. 1650005 ◽  
Author(s):  
Jiangang Xie ◽  
Zichao Guo ◽  
Hai Liu ◽  
Qing Huo Liu

We propose a pre-stack reverse time migration (RTM) seismic imaging method using the pseudospectral time-domain (PSTD) algorithm. Traditional pseudospectral method uses the fast Fourier transform (FFT) algorithm to calculate the spatial derivatives, but is limited by the wraparound effect due to the periodicity assumed in the FFT. The PSTD algorithm combines the pseudospectral method with a perfectly matched layer (PML) for acoustic waves. PML is a highly effective absorbing boundary condition that can eliminate the wraparound effect. It enables a wide application of the pseudospectral method to complex models. RTM based on the PSTD algorithm has advantages in the computational efficiency compared to traditional methods such as the second-order and high order finite difference time-domain (FDTD) methods. In this work, we implement the PSTD algorithm for acoustic wave equation based RTM. By applying the PSTD-RTM method to various seismic models and comparing it with RTM based on the eighth-order FDTD method, we find that PSTD-RTM method has better performance and saves more than 50% memory. The method is suitable for parallel computation, and has been accelerated by general purpose graphics processing unit.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. S469-S475 ◽  
Author(s):  
Carlos Alberto da Costa Filho ◽  
Andrew Curtis

The objective of prestack depth migration is to position reflectors at their correct subsurface locations. However, migration methods often also generate artifacts along with physical reflectors, which hamper interpretation. These spurious reflectors often appear at different spatial locations in the image depending on which migration method is used. Therefore, we have devised a postimaging filter that combines two imaging conditions to preserve their similarities and to attenuate their differences. The imaging filter is based on combining the two constituent images and their envelopes that were obtained from the complex vertical traces of the images. We have used the method to combine two images resulting from different migration schemes, which produce dissimilar artifacts: a conventional migration method (equivalent to reverse time migration) and a deconvolution-based imaging method. We show how this combination may be exploited to attenuate migration artifacts in a final image. A synthetic model containing a syncline and stochastically generated small-scale heterogeneities in the velocity and density distributions was used for the numerical example. We compared the images in detail at two locations where spurious events arose and also at a true reflector. We found that the combined imaging condition has significantly fewer artifacts than either constituent image individually.


Sign in / Sign up

Export Citation Format

Share Document