Near-Borehole Imaging Using Full-Waveform Sonic Data

2021 ◽  
Author(s):  
Hala Alqatari ◽  
Thierry-Laurent Tonellot ◽  
Mohammed Mubarak

Abstract This work presents a full waveform sonic (FWS) dataset processing to generate high-resolution images of the near-borehole area. The dataset was acquired in a nearly horizontal well over a distance of 5400 feet. Multiple formation boundaries can be identified on the final image and tracked at up to 200 feet deep, along the wellbore's trajectory. We first present a new preprocessing sequence to prepare the sonic data for imaging. This sequence leverages denoising algorithms used in conventional surface seismic data processing to remove unwanted components of the recorded data that could harm the imaging results. We then apply a reverse time migration algorithm to the data at different processing stages to assess the impact of the main processing steps on the final image.

2020 ◽  
Vol 223 (1) ◽  
pp. 77-93
Author(s):  
Peng Guo ◽  
Huimin Guan ◽  
George A McMechan

SUMMARY Seismic data recorded using a marine acquisition geometry contain both upgoing reflections from subsurface structures and downgoing ghost waves reflected back from the free surface. In addition to the ambiguity of propagation directions in the data, using the two-way wave equation for wavefield extrapolation of seismic imaging generates backscattered/turned waves when there are strong velocity contrasts/gradients in the model, which further increases the wavefield complexity. For reverse-time migration (RTM) of free-surface multiples, apart from unwanted crosstalk between inconsistent orders of reflections, image artefacts can also be formed along with the true reflector images from the overlapping of up/downgoing waves in the data and in the extrapolated wavefield. We present a wave-equation-based, hybrid (data- and model-domain) wave separation workflow, with vector seismic data containing pressure- and vertical-component particle velocity from dual-sensor seismic acquisition, for removing image artefacts produced by the mixture of up/downgoing waves. For imaging with free-surface multiples, the wavefield extrapolated from downgoing ghost events (reflected from the free surface) in the recorded data act as an effective source wavefield for one-order-higher free-surface multiples. Therefore, only the downgoing waves in the data should be used as the source wavefield for RTM with multiples; the recorded upgoing waves in the seismograms will be used for extrapolation of the time-reversed receiver wavefield. We use finite-difference (FD) injection for up/down separation in the data domain, to extrapolate the down- and upgoing waves of the common-source gathers for source and receiver wavefield propagation, respectively. The model-domain separation decomposes the extrapolated wavefield into upgoing (backscattered) and downgoing (transmitted) components at each subsurface grid location, to remove false images produced by cross-correlating backscattered waves along unphysical paths. We combine FD injection with the model-domain wavefield separation, for separating the wavefield into up- and downgoing components for the recorded data and for the extrapolated wavefields. Numerical examples using a simple model, and the Sigsbee 2B model, demonstrate that the hybrid up/down separation approach can effectively produce seismic images of free-surface multiples with better resolution and fewer artefacts.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. T287-T300 ◽  
Author(s):  
Lasse Amundsen ◽  
Johan O. A. Robertsson

Methods for wavefield injection are used in, for instance, reverse time extrapolation of shot gathers in reverse time migration. For correct injection of recorded data without any ambiguity of the propagation direction, the wavefield-injection methodology requires pressure and particle velocity data such as multicomponent towed marine or seabed seismic recordings. We discovered that by carefully considering the models (medium parameters and boundary conditions) for injection, wavefield injection of multicomponent data can also be used to solve several long-standing challenges in marine seismic data processing by means of conventional time-space-domain finite-difference propagators. We outlined and demonstrated several of these important applications including up-down separation of wavefields (deghosting), direct-wave removal, source-signature estimation, multiple removal, and imaging using primaries and multiples. Only acoustic models are considered, but the concepts are straightforward to generalize to elastodynamic and electromagnetic models.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. R55-R73 ◽  
Author(s):  
Yuqing Chen ◽  
Zongcai Feng ◽  
Lei Fu ◽  
Abdullah AlTheyab ◽  
Shihang Feng ◽  
...  

Reflection full-waveform inversion (RFWI) can recover the low-wavenumber components of the velocity model along with the reflection wavepaths. However, this requires an expensive least-squares reverse time migration (LSRTM) to construct the perturbation image that can still suffer from cycle-skipping problems. As an inexpensive alternative to LSRTM, we use migration deconvolution (MD) with RFWI. To mitigate cycle-skipping problems, we develop a multiscale reflection phase inversion (MRPI) strategy that boosts the low-frequency data and should only explain the phase information in the recorded data, not its magnitude spectrum. We also use the rolling-offset strategy that gradually extends the offset range of data with an increasing number of iterations. Numerical results indicate that the MRPI + MD method can efficiently recover the low-wavenumber components of the velocity model and is less prone to getting stuck in local minima compared to conventional RFWI.


2017 ◽  
Vol 10 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Zhiming Chen ◽  
Guanghui Huang

AbstractWe propose a reliable direct imaging method based on the reverse time migration for finding extended obstacles with phaseless total field data. We prove that the imaging resolution of the method is essentially the same as the imaging results using the scattering data with full phase information when the measurement is far away from the obstacle. The imaginary part of the cross-correlation imaging functional always peaks on the boundary of the obstacle. Numerical experiments are included to illustrate the powerful imaging quality


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. S249-S259 ◽  
Author(s):  
Tong Zhou ◽  
Wenyi Hu ◽  
Jieyuan Ning

Most existing [Formula: see text]-compensated reverse time migration ([Formula: see text]-RTM) algorithms are based on pseudospectral methods. Because of the global nature of pseudospectral operators, these methods are not ideal for efficient parallelization, implying that they may suffer from high computational cost and inefficient memory usage for large-scale industrial problems. In this work, we reported a novel [Formula: see text]-RTM algorithm — the multistage optimized [Formula: see text]-RTM method. This [Formula: see text]-RTM algorithm uses a finite-difference method to compensate the amplitude and the phase simultaneously by uniquely combining two techniques: (1) a negative [Formula: see text] method for amplitude compensation and (2) a multistage dispersion optimization technique for phase correction. To prevent high-frequency noise from growing exponentially and ruining the imaging results, we apply a finite impulse response low-pass filter using the Kaiser window. The theoretical analyses and numerical experiments demonstrate that this [Formula: see text]-RTM algorithm precisely recovers the decayed amplitude and corrects the distorted phase caused by seismic attenuation effects, and hence produces higher resolution subsurface images with the correct structural depth information. This new method performs best in the frequency range of 10–70 Hz. Compared with pseudospectral [Formula: see text]-RTM methods, this [Formula: see text]-RTM approach offers nearly identical imaging quality. Based on local numerical differential operators, this [Formula: see text]-RTM method is very suitable for parallel computing and graphic processing unit implementation, an important feature for large 3D seismic surveys.


2021 ◽  
Author(s):  
Pavlo Kuzmenko ◽  
Viktor Buhrii ◽  
Carlo D'Aguanno ◽  
Viktor Maliar ◽  
Hrigorii Kashuba ◽  
...  

Abstract Processing of the seismic data acquired in areas of complex geology of the Dnieper-Donets basin, characterized by the salt tectonics, requires special attention to the salt dome interpretation. For this purpose, Kirchhoff Depth Imaging and Reverse Time Migration (RTM) were applied and compared. This is the first such experience in the Dnieper-Donets basin. According to international experience, RTM is the most accurate seismic imaging method for steep and vertical geological (acoustic contrast) boundaries. Application of the RTM on 3D WAZ land data is a great challenge in Dnieper-Donets Basin because of the poor quality of the data with a low signal-to-noise ratio and irregular spatial sampling due to seismic acquisition gaps and missing traces. The RTM algorithm requires data, organized to native positions of seismic shots. For KPSDM we used regularized data after 5D interpolation. This affects the result for near salt reflection. The analysis of KPSDM and RTM results for the two areas revealed the same features. RTM seismic data looked more smoothed, but for steeply dipping reflections, lateral continuity of reflections was much improved. The upper part (1000 m) of the RTM has shadow zones caused by low fold. Other differences between Kirchhoff data and RTM are in the spectral content, as the former is characterized by the full range of seismic frequency spectrum. Conversely, beneath the salt, the RTM has reflections with steep dips which are not observed on the KPSDM. It is possible to identify new prospects using the RTM seismic image. Reverse Time Migration of 3D seismic data has shown geologically consistent results and has the potential to identify undiscovered hydrocarbon traps and to improve salt flank delineation in the complex geology of the Dnieper-Donets Basin's salt domes.


Sign in / Sign up

Export Citation Format

Share Document