Annulus Unloading Rates as Influenced by Wellbore Storage and Skin Effect

1972 ◽  
Vol 12 (05) ◽  
pp. 453-462 ◽  
Author(s):  
Henry J. Ramey ◽  
Ram G. Agarwal

Abstract The modern trend in well testing (buildup or drawdown) bas been toward acquisition and analysis of short-time data. Pressure data early in a test are usually distorted by several factors that mask the conventional straight line. Some of the factors are wellbore storage and various skin effects such as those due to perforations, partial penetration, non-Darcy flow, or well stimulation effects. Recently, Agarwal et al. presented a fundamental study of the importance of wellbore storage with a skin effect to short-time transient flow. This paper further extends the concept of analyzing short-time well test data to include solutions of certain drillstem test problems and of cases wherein the storage constant, CD, undergoes an abrupt change from one constant value to another. An example of the latter case is change in storage type from compression to liquid level variations when tubinghead pressure drops to atmospheric Arks production. The purpose of the present paper is to: production. The purpose of the present paper is to:present tabular and graphical results for the sandface flow rate, qsf, and the annulus unloading rate, qa, as a fraction of the constant surface rate, q, andillustrate several practical well test situations that require such a solution. Results include a range of values of the storage constant, CD, and the skin effect, s, useful for well test problems. problems. Annulus unloading or storage bas been shown to be an important physical effect that often controls early well test behavior. As a result of this study, it appears that interpretations of short-time well test data can be made with a greater reliability, and solutions to other storage-dominated problems can be obtained easily. Techniques presented in this paper should enable the users to analyze certain short-time well test data that could otherwise be regarded as useless. Introduction In a recent paper, Agarwal et al. presented a study of the importance of wellbore storage with a skin effect to short-time transient flow. They also presented an analytical expression for the fraction presented an analytical expression for the fraction of the constant surface rate, q, produced from the annulus Although the rigorous solution (inversion integral) and long- and short-time approximate forms were discussed, neither tabular nor graphical results ofdpwD the annulus unloading rate, CD, were given.dtD It now appears that such solutions are useful in certain drillstem test problems and in cases wherein the storage constant, CD, changes during a well test. An example is change in storage type from compression to liquid level change when tubinghead pressure drops to atmospheric during production. pressure drops to atmospheric during production. The purpose of this study is to (1) present tabular and graphical results for the sandface flow rate and the annulus unloading rate and (2) illustrate several practical well test situations that require the practical well test situations that require the solutions. THE CLASSIC WELLBORE STORAGE PROBLEM The problem to be considered is one of flow of a slightly compressible fluid in an ideal radial flow system. SPEJ P. 453

1970 ◽  
Vol 10 (03) ◽  
pp. 279-290 ◽  
Author(s):  
Ram G. Agarwal ◽  
Rafi Al-Hussainy ◽  
H.J. Ramey

Agarwal, Ram G., Pan American Petroleum Corp. Tulsa, Okla., Pan American Petroleum Corp. Tulsa, Okla., Al-Hussainy, Rafi, Junior Members AIME, Mobil Research and Development Corp., Dallas, Tex., Ramey Jr., H.J., Member AIME, Stanford U. Stanford, Calif. Abstract Due to the cost of extended pressure-drawdownor buildup well tests and the possibility of acquisitionof additional information from well tests, the moderntrend has been toward development of well-testanalysis methods pertinent for short-time data."Short-time" data may be defined as pressureinformation obtained prior to the usual straight-lineportion of a well test. For some time there has been portion of a well test. For some time there has been a general belief that the factors affecting short-timedata are too complex for meaningful interpretations. Among these factors are wellbore storage, variousskin effects such as perforations, partial penetration, fractures of various types, the effect of a finiteformation thickness, and non-Darcy flow. A numberof recent publications have dealt with short-timewell-test analysis. The purpose of this paper isto present a fundamental study of the importance ofwellbore storage with a skin effect to short-timetransient flow. Results indicate that properinterpretations of short-time well-test data can bemade under favorable circumstances. Upon starting a test, well pressures appearcontrolled by wellbore storage entirely, and datacannot be interpreted to yield formation flowcapacity or skin effect. Data can be interpreted toyield the wellbore storage constant, however. Afteran initial period, a transition from wellbore storagecontrol to the usual straight line takes place. Dataobtained during this period can be interpreted toobtain formation flow capacity and skin effect incertain cases. One important result is that thesteady-state skin effect concept is invalid at veryshort times. Another important result is that thetime required to reach the usual straight line isnormally not affected significantly by a finite skineffect. Introduction Many practical factors favor short-duration welltesting. These include loss of revenue during shut-in, costs involved in measuring drawdown or buildupdata for extended periods, and limited availabilityof bottomhole-pressure bombs where it is necessaryto survey large numbers of wells. on the other hand, reservoir engineers are well aware of the desirabilityof running long-duration tests. The result is usuallya compromise, and not necessarily a satisfactoryone. This situation is a common dilemma for thefield engineers who must specify the details of specialwell tests and annual surveys, and interpret theresults. For this reason, much effort has been givento the analysis of short-time tests. The term"short-time" is used herein to indicate eitherdrawdown or buildup tests run for a period of timeinsufficient to reach the usual straight-line portions. Drawdown data taken before the traditional straight-lineportion are ever used in analysis of oil or gas portion are ever used in analysis of oil or gas well performance. Well files often contain well-testdata that were abandoned when it was realized thatthe straight line had not been reached. This situationis particularly odd when it is realized that earlydata are used commonly in other technologies whichemploy similar, or analogous, transient test. It is the objective of this study to investigatetechniques which may be used to interpret informationobtained form well tests at times prior to the normalstraight-line period. THEORY The problem to be considered is the classic oneof flow of a slightly compressible (small pressuregradients) fluid in an ideal radial flow system. Thatis, flow is perfectly radial to a well of radius rwin an isotropic medium, and gravitational forces areneglected. We will consider that the medium isinfinite in extent, since interest is focused on timesshort enough for outer boundary effects not to befelt at the well. SPEJ p. 279


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
K. Razminia ◽  
A. Hashemi ◽  
A. Razminia ◽  
D. Baleanu

This paper addresses some methods for interpretation of oil and gas well test data distorted by wellbore storage effects. Using these techniques, we can deconvolve pressure and rate data from drawdown and buildup tests dominated by wellbore storage. Some of these methods have the advantage of deconvolving the pressure data without rate measurement. The two important methods that are applied in this study are an explicit deconvolution method and a modification of material balance deconvolution method. In cases with no rate measurements, we use a blind deconvolution method to restore the pressure response free of wellbore storage effects. Our techniques detect the afterflow/unloading rate function with explicit deconvolution of the observed pressure data. The presented techniques can unveil the early time behavior of a reservoir system masked by wellbore storage effects and thus provide powerful tools to improve pressure transient test interpretation. Each method has been validated using both synthetic data and field cases and each method should be considered valid for practical applications.


1972 ◽  
Author(s):  
Alain C. Gringarten ◽  
Henry J. Ramey ◽  
R. Raghavan

INTRODUCTION During the last few years, there has been an explosion of information in the field of well test analysis. Because of increased physical understanding of transient fluid flow, the entire pressure history of a well test can be analyzed, not just long-time data as in conventional analysis.! It is now often possible to specify the time of beginning of the correct semilog straight line and determine whether the correct straight line has been properly identified. It is also possible to identify wellbore storage effects and the nature of wellbore stimulation as to permeability improvement, or fracturing, and perform quantitative analyses of these effects. These benefits were brought about in the main by attempts to understand the short-time pressure data from well testing, data which were often classified as too complex for analysis. One recent study of short-time pressure behavior2 showed that it was important to specify the physical nature of the stimulation in consideration of stimulated well behavior. That is, statement of the van Everdingen-Hurst infinitesimal skin effect as negative was not sufficient to define short-time well behavior. For instance, acidized {but not acid fraced) and hydraulically fractured wells did not necessarily have the same behavior at early times, even though they might possess the same value of negative skin effect.


1970 ◽  
Vol 10 (03) ◽  
pp. 291-297 ◽  
Author(s):  
Robert A. Wattenbarger ◽  
H.J. Ramey

Abstract An investigation of the effect of wellbore storage and skin effect on transient flow was conducted using a finite-difference solution to the basic partial differential equation. The concept of skin partial differential equation. The concept of skin effect was generalized to include a composite annular region adjacent to the wellbore (a composite reservoir). The numerical solutions were compared with analytical solutions for cases with the usual steady-state skin effect. It was found that the solutions for a finite-capacity skin effect compared closely with analytical solutions at short times (wellbore storage controlled) and at long times after the usual straight line was reached. For intermediate times, presence of a unite-capacity skin effect caused significant departures from the infinitesimal skin solutions. Two straight lines occurred on the drawdown plot for cases of large radius of damage. The first had a slope characteristic of the flow, capacity of the damaged region; the second straight line had a slope characteristic of the flow capacity of the undamaged region. Results are presented both in tabular form and as log-log plots of dimensionless pressures vs dimensionless times. The log-log pressures vs dimensionless times. The log-log plot may be used in a type-curve matching plot may be used in a type-curve matching procedure to analyze short-time (before normal procedure to analyze short-time (before normal straight line) well-test data. Introduction Skin effect was defined by van Everdingen and Hurst as being an impediment to flow that is caused by an infinitesimally thin damaged region around the wellbore. The additional pressure drop through this skin is proportional to the wellbore flow rate and behaves as though flow through the skin were steady-state. Wellbore storage is caused by having a moving liquid level in a wellbore, or by simply having a volume of compressible fluid stored in the wellbore. When surface flow rates change abruptly, wellbore storage causes a time lag in formation flow rates and a corresponding damped pressure response. A recent study was made to determine the combined effects of infinitesimally thin skin and wellbore storage. Analytical methods were used along with numerical integration of a Laplace transformation inversion integral. Tabular and graphical results were presented for various cases. It was recognized during the study that this representation of skin was oversimplified; that skin effect should be thought of as a result of formation damage or improvement to a finite region adjacent to the wellbore. It was suggested that a skin effect could arise physical in a number of ways. One simple example physical in a number of ways. One simple example would be to assume that an annular volume adjacent to the wellbore is reduced uniformly to a lower permeability than the original value. This would be similar to the composite reservoir problem. Perhaps a better example would be to problem. Perhaps a better example would be to assume that the permeability increases continuously from a low value at the wellbore to a constant value in the undamaged reservoir. In either case, the damaged region would have a finite storage capacity and would lead to transient behavior within the skin region. A negative skin effect could arise from an increase in permeability within an annular region adjacent to the wellbore. This might physically result from acidizing. But it is believed that cases of more practical importance are those in which negative skin effects are caused by hydraulic fracturing. A high-permeability fracture communicating with the wellbore gives the appearance of a negative skin effect. For the purposes of this study, it was decided to represent a skin effect, either positive or negative as an annular region adjacent to the wellbore with either decreased or increased permeability. permeability. SPEJ P. 291


SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1858-1869 ◽  
Author(s):  
Emilio P. Sousa ◽  
Abelardo B. Barreto ◽  
Alvaro M. Peres

Summary Even when written in terms of a pseudopressure function, the diffusivity equation for flow of gases through porous media is, rigorously speaking, nonlinear because the viscosity-compressibility product is pseudopressure-dependent. However, several techniques and analysis procedures neglect such nonlinearity. A new methodology for constructing solutions for gas reservoirs through the Green's functions (GF) technique was recently proposed in the literature. Such methodology handles the viscosity-compressibility product variation rigorously, and it was applied to solve several gas-well test problems successfully. However, wellbore storage and skin effects were not considered yet by this new approach. In this work, the GF technique is applied to obtain a new solution for an infinite, homogeneous, isotropic gas reservoir being produced through a single vertical well represented by a line-source with wellbore storage and skin. The solution, however, does not consider non-Darcy flow effects. Even though the wellbore storage introduces a new nonlinearity to an already nonlinear problem, this work presents two accurate approximate solutions compared with the results from a commercial numerical well-testing simulator. This work also shows that the wellbore pseudopressure dimensionless solution is a function of the correlating groups CDexp(2S) and tD/CD, exactly similar to the way that wellbore dimensionless liquid solutions are. Liquid and gas dimensionless solutions under these correlating groups are not equal, though.


2017 ◽  
Vol 2 (3) ◽  
pp. 240-251
Author(s):  
Zheno Kareem Ahmed ◽  
Halkawt Ismail Ismail M-Amin

The aim of this paper is to discuss and evaluate the result of DST which was conducted in a limestone reservoir of an oil field at the depth interval 3764.29-3903.0 meter in well-1 to evaluate the dynamic characteristics of the reservoirs, for instance: skin effect, permeability, wellbore storage, reservoir boundary and average reservoir pressure. Reservoir Pressure profiles has been recorded for both Buildup and draw down intervals.  Semi-log and log-log coordinates have been used to plot the pressure signature date of both buildup period and its derivative to improve diagnostic and Horner plot. In addition, a dual porosity reservoir and infinite acting characteristic was discovered as a result of the well test data interpretation. Wellbore storage, skin factor and transient flow effects have been detected in the DST analysis on the dual porosity behavior due to phase re distribution.  Using final buildup sections, the flow parameters of dual porosity reservoir were determined as the flow between fissure and matrix was (7.558 x 10-6) while, the storability ratio between fissure and matrix was calculated as 0.3 and permeability is 102 MD for both matrix and the fissure together. However, negative value of skin factor mostly appears in double porosity limestone reservoirs, positive skin factor of the reservoir has been observed in this study. It can be considered that the positive skin factor can be resulted in either the formation was partially penetrated and /or wells were not cleaned up properly.


1980 ◽  
Vol 20 (01) ◽  
pp. 25-38 ◽  
Author(s):  
Chi U. Ikoku ◽  
Henry J. Ramey

Abstract A model recently presented by Ikoku and Ramey for non-Newtonian power-law flow in porous media was extended to flow in finite circular reservoirs. A constant flow rate was stipulated at the wellbore, and two boundary conditions were considered: no-flow outer boundary and constant-pressure outer boundary. The results were used to derive a new expression for the stabilization time for power-law flow in porous media.Wellbore storage and skin effects always distort the transient pressure behavior of wells in petroleum reservoirs. It is important to investigate the consequences of these phenomena and be able to interpret real well test information. This paper considers the effects of skin and wellbore storage on the transient flow of non-Newtonian power-law fluids in petroleum reservoirs. petroleum reservoirs. A new numerical wellbore storage simulator was used to study the effects of skin and wellbore storage during the transient flow of power-law fluids in infinitely large and finite circular reservoirs. Results are presented both in tabular form and as log-log graphs of dimensionless pressures vs dimensionless times. The log-log graphs may be used in a type-Curve matching procedure to analyze short-time well test data.The early period is dominated by wellbore storage effect. A new expression was obtained for the duration of wellbore storage effect when skin exists for infinitely large reservoirs. This criterion is not valid for finite circular reservoirs with no-flow outer boundary or constant-pressure outer boundary. Results indicate that there is no apparent end of wellbore storage effect for the no-flow outer boundary condition for the values of external radius presented. New relationships were derived for skin presented. New relationships were derived for skin factor and "effective well radius" for power-law flow. Introduction Many papers in the petroleum engineering, chemical engineering, and rheology literature have addressed the subject of non-Newtonian flow in porous media. These studies have represented non-Newtonian flow with power-law models. Most of the results are similar. The main differences in the final expressions lie in the type of power-law model used.In the basic papers on the transient flow of non-Newtonian power-law fluids in porous media, wellbore storage effect was not considered. Ikoku and Ramey and Odeh and Yang presented techniques for calculating the skin factor from injection well test data. However, wellbore storage and skin effects always distort the transient pressure behavior of wells in petroleum reservoirs. It is important to investigate the consequences of these phenomena to be able to interpret real well test information properly.The flow geometries of interest to petroleum engineers in well test analysis usually involve bounded reservoirs. In most cases, a constant flow rate is stipulated at the well along with one of these outer boundary conditions: no flow across the outer boundary, or constant pressure at the outer boundary. Reservoirs with rectangular and other polygonal shapes often are encountered. Transient polygonal shapes often are encountered. Transient pressure behavior for these shapes may be obtained pressure behavior for these shapes may be obtained by applying the principle of superposition in space to the solutions of the infinitely large reservoir cases.In this paper we seek solutions for constant-rate injection into finite circular reservoirs with no-flow and constant-pressure outer boundaries. SPEJ P. 25


2015 ◽  
Author(s):  
Zohrab Dastkhan ◽  
Ali Zolalemin ◽  
Kambiz Razminia ◽  
Hadi Parvizi

Sign in / Sign up

Export Citation Format

Share Document