Application of a General-Purpose Network Optimizer to Oil and Gas Production

Author(s):  
Santanu Barua ◽  
Alice Probst
SPE Journal ◽  
2010 ◽  
Vol 15 (02) ◽  
pp. 368-381 ◽  
Author(s):  
Y.. Fan ◽  
L.J.. J. Durlofsky ◽  
H.A.. A. Tchelepi

Summary Oil shale is a highly abundant energy resource, though commercial production has yet to be realized. Thermal in-situ upgrading processes for producing hydrocarbons from oil shale have gained attention recently, however, in part because of promising results reported by Shell using its in-situ conversion process (Crawford et al. 2008). This and similar processes entail heating the oil shale to approximately 700°F (371°C), where the kerogen in the shale decomposes through a series of chemical reactions into liquid and gas products. In this paper, we present a detailed numerical formulation of the in-situ upgrading process. Our model, which can be characterized as a thermal/compositional, chemical reaction, and flow formulation, is implemented into Stanford's General Purpose Research Simulator (GPRS). The formulation includes strongly temperature-dependent kinetic reactions, fully compositional flow and transport, and a model for the introduction of heat into the formation through downhole heaters. We present detailed simulation results for representative systems. The model and heating patterns are based on information in Shell publications; chemical-reaction and thermodynamic data are from previously reported pyrolysis experiments. After a relatively modest degree of parameter adjustment (with parameters restricted to physically realistic ranges), our results for oil and gas production are in reasonable agreement with available field data. We also investigate various sensitivities and show how production is affected by heater temperature and location. The ability to model these effects will be essential for the eventual design and optimization of in-situ upgrading operations.


1994 ◽  
Author(s):  
Richard F. Mast ◽  
D.H. Root ◽  
L.P. Williams ◽  
W.R. Beeman

Alloy Digest ◽  
1995 ◽  
Vol 44 (1) ◽  

Abstract SANDVIK SANICRO 41 is a nickel-base corrosion resistant alloy with a composition balanced to resist both oxidizing and reducing environments. A high-strength version (110) is available for oil and gas production. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-475. Producer or source: Sandvik.


Sign in / Sign up

Export Citation Format

Share Document