Development of a New Crosslinked-HEC Fluid Loss Control Pill for Highly-Overbalanced, High-Permeability and/or High Temperature Formations

Author(s):  
F.F. Chang ◽  
S.A. Ali ◽  
J. Cromb ◽  
M. Bowman ◽  
M. Parlar
2016 ◽  
Author(s):  
A. Cadix ◽  
J. Wilson ◽  
W. Bzducha ◽  
J.-R. Gomez ◽  
A. Feuillette ◽  
...  

Author(s):  
Khalil Rehman Memon ◽  
Aftab Ahmed Mahesar ◽  
Shahzad Ali Baladi ◽  
Muhannad Talib Sukar

The experimental study was conducted on rheological properties in laboratory to measure the integrity of cement slurry. Three samples were used and analyzed at different parameters to check the elasticity of cement slurry. Additives with various concentrations, i.e. silica fume % BWOC (Present by Weight on Cement) (15, 17, 19 and 21), dispersant % Wt (Percent Weight) (0.21, 0.26 and 0.31) and additional 1; % Wt of fluid losscontrol were used to improve the performance of the cement slurry at the temperature of 123oC. The results have shown that increase in the concentration of dispersants that have caused to decrease in the Plastic Viscosity (PV), Yield Point (YP) and GS (Gel Strength). The rheological properties of cement were improved with the addition of fluid loss control additive in 21 % BWOC (Present by Weight on Cement) silica fume increase the water quantity in cement slurry that improve its durability and to reduce the strength retrogression in High Temperature High Pressure (HTHP) environment. Results were achieved through HTHP OFITE Viscometer (Model 1100).


2016 ◽  
Vol 847 ◽  
pp. 497-504
Author(s):  
Xiu Jian Xia ◽  
Jin Tang Guo ◽  
Shuo Qiong Liu ◽  
Jian Zhou Jin ◽  
Yong Jin Yu ◽  
...  

On account of that the domestic polymer fluid loss additive exists some severe problems, such as, inferior thermal resistance, poor salt tolerance, strong shear-and thermal thinning behavior, a novel polymer/silica nanocomposite PADMO-V@NS is used as ultra-high temperature fluid loss control additive for cementing. In the present study PADMO-V@NS was prepared through an in situ free radical copolymerization of 2-acrylamico-2-methylpropane sulfonic acid (AMPS), N,N-dimethylacryl amide (DMAM), maleic anhydride (MA), octadecyl dimethylallyl ammonium chloride (ODAAC) and triethoxyvinylsilane (VTS) modified nanosilica. The linear hydrophobic associated copolymer was regarded as the shell and the modified nanosilica as the core. The microstructure, compositions and thermal resistance of PADMO-V@NS were investigated through FTIR and TGA techniques. The results showed that the copolymer modified with nanosilica particles possessed more excellent thermal stability than that of PADMO, and the most rapid decomposing temperature of PADMO-V@NS was highly up to 396.9°C. The application performance of PADMO-V@NS in cement slurry exhibited that it had excellent fluid loss control capacity, good high temperature resistance, strong salt tolerance and mild shear-/ thermal thinning performance, and could be used in 220°C and saturated brine circumstances. Moreover, comparing to PADMO, the compressive strength of set cement containing the copolymer increased over 20 % at 80°C, atmosphere pressure and curing time of 1 day due to the reaction of residual silanol groups with Ca (OH)2. The laboratory research results indicated that the multi-functional fluid loss additive composed of hydrophobic associated polymer/silica nanocomposite had bestowed on the cement slurry systems good comprehensive properties, and may have extensive applications in deep & ultra-deep oil/gas wells cementing.


2013 ◽  
Vol 753-755 ◽  
pp. 130-133
Author(s):  
Hui Hong Luo ◽  
Ze Hua Wang ◽  
Yu Xue Sun ◽  
Han Jiang

Focus on the high temperature rheological stability and the fluid loss control of resistance to high temperature drilling fluid system, further determine system formula and the formula of the high temperature drilling fluid system should be optimized. Eventually, a kind of organo-silica drilling fluid system of excellent performance which is resistant to high temperature of 220 degrees has been developed, and the system performances have been evaluated. The high temperature-resistant organo-silica drilling fluid system is of good shale inhibition, lubricity and borehole stability. The fluid loss is low and the filter cake is thin and tight, which can effectively prevent bit balling. The sand-carrying ability is good and the rheological property is easy to control. The performances of drilling fluid remain stable under high salinity and the system can resist the pollution of 6%NaCl and 0.5%CaC12. The materials used in this system are non-toxic, non-fluorescent and suitable for deep well drilling.


1989 ◽  
Author(s):  
M.E. Blauch ◽  
G.J. Broussard ◽  
L.W. Sanclemente ◽  
J.D. Weaver ◽  
J.R. Pace

2021 ◽  
Author(s):  
Alexandra Clare Morrison ◽  
Conan King ◽  
Kevin Rodrigue

Abstract A combination of divalent base brine and high wellbore temperature presents significant challenges for high density aqueous reservoir drilling fluids. Such systems traditionally use biopolymers as viscosifiers; however, they are subject to degradation at elevated temperatures. Non-aqueous drilling fluids are thermally stable but complete removal of the filtercake is challenging and this can lead to formation damage. This paper describes the qualification and first deepwater drilling application of a unique aqueous reservoir drilling fluid at temperatures above 320°F. A high-temperature divalent brine-based reservoir drilling fluid (HT-RDF) and a solids-free screen running fluid (SF-SRF) were designed, both utilizing the same novel synthetic polymer technology. Calcium bromide brine was selected for use to minimize the total amount of acid-soluble solids in the drilling fluid. A comprehensive qualification was undertaken examining parameters such as rheology performance across a range of temperatures, long-term stability, fluid loss under expected and stress conditions (16 hours at 356°F), production screen test (PST), and various fluid-fluid compatibility tests. Return permeability tests were conducted on the final formulations to validate their suitability for use. The synthetic polymer technology provided excellent rheology, suspension, and fluid loss control in the fluid systems designed in the laboratory. To prepare for field execution multiple yard mixes were performed to verify the laboratory results on a larger scale. Additionally, a flow loop system was utilized to evaluate fluid performance under simulated downhole temperature and pressure conditions before field deployment. The final high temperature drilling fluid as designed provided rheological properties that met the necessary equivalent circulating density (ECD) requirements while drilling the reservoir. The fluid loss remained extremely stable and there were no downhole losses despite the depleted nature of the wellbore. Production screens were run straight to total depth (TD) with no wellbore stability issues after a three-day logging campaign. High temperature aqueous reservoir drilling fluids have historically been limited by the lack of suitable viscosifiers and fluid loss control additives. This paper outlines the design, mixing and logistical considerations and field execution of a novel polymer-based reservoir drilling fluid.


Sign in / Sign up

Export Citation Format

Share Document