Research of Nanosilica Particles Grafted with Functional Polymer Used as Fluid Loss Additive for Cementing under Ultra-High Temperature

2016 ◽  
Vol 847 ◽  
pp. 497-504
Author(s):  
Xiu Jian Xia ◽  
Jin Tang Guo ◽  
Shuo Qiong Liu ◽  
Jian Zhou Jin ◽  
Yong Jin Yu ◽  
...  

On account of that the domestic polymer fluid loss additive exists some severe problems, such as, inferior thermal resistance, poor salt tolerance, strong shear-and thermal thinning behavior, a novel polymer/silica nanocomposite PADMO-V@NS is used as ultra-high temperature fluid loss control additive for cementing. In the present study PADMO-V@NS was prepared through an in situ free radical copolymerization of 2-acrylamico-2-methylpropane sulfonic acid (AMPS), N,N-dimethylacryl amide (DMAM), maleic anhydride (MA), octadecyl dimethylallyl ammonium chloride (ODAAC) and triethoxyvinylsilane (VTS) modified nanosilica. The linear hydrophobic associated copolymer was regarded as the shell and the modified nanosilica as the core. The microstructure, compositions and thermal resistance of PADMO-V@NS were investigated through FTIR and TGA techniques. The results showed that the copolymer modified with nanosilica particles possessed more excellent thermal stability than that of PADMO, and the most rapid decomposing temperature of PADMO-V@NS was highly up to 396.9°C. The application performance of PADMO-V@NS in cement slurry exhibited that it had excellent fluid loss control capacity, good high temperature resistance, strong salt tolerance and mild shear-/ thermal thinning performance, and could be used in 220°C and saturated brine circumstances. Moreover, comparing to PADMO, the compressive strength of set cement containing the copolymer increased over 20 % at 80°C, atmosphere pressure and curing time of 1 day due to the reaction of residual silanol groups with Ca (OH)2. The laboratory research results indicated that the multi-functional fluid loss additive composed of hydrophobic associated polymer/silica nanocomposite had bestowed on the cement slurry systems good comprehensive properties, and may have extensive applications in deep & ultra-deep oil/gas wells cementing.

2020 ◽  
Vol 993 ◽  
pp. 1351-1355
Author(s):  
Wei Yuan Xiao ◽  
Ming Li ◽  
Dong Bo Xie

In order to study the effect of brine environment on the performance of oil well cement fluid loss additive (FLA) sodium p-styrene sulfonate/N-methylol acrylamide/itaconic acid (SSS/HAM/IA), the water loss of three different cement slurry systems added with different FLA additions (fresh water cement slurry, semi-saturated brine cement slurry and saturated brine cement slurry) were tested at 90°C and 150°C. The results show that SSS/HAM/IA has good salt tolerance. The water loss of three cement slurry systems was controlled within 100mL with FLA addition adjusted in the range of 1%~3% below 150 °C. The salt tolerance mechanism of SSS/HAM/IA was analyzed based on the microstructure of the three system terpolymer solutions characterized under environmental scanning electron microscopy (ESEM).


Author(s):  
Khalil Rehman Memon ◽  
Aftab Ahmed Mahesar ◽  
Shahzad Ali Baladi ◽  
Muhannad Talib Sukar

The experimental study was conducted on rheological properties in laboratory to measure the integrity of cement slurry. Three samples were used and analyzed at different parameters to check the elasticity of cement slurry. Additives with various concentrations, i.e. silica fume % BWOC (Present by Weight on Cement) (15, 17, 19 and 21), dispersant % Wt (Percent Weight) (0.21, 0.26 and 0.31) and additional 1; % Wt of fluid losscontrol were used to improve the performance of the cement slurry at the temperature of 123oC. The results have shown that increase in the concentration of dispersants that have caused to decrease in the Plastic Viscosity (PV), Yield Point (YP) and GS (Gel Strength). The rheological properties of cement were improved with the addition of fluid loss control additive in 21 % BWOC (Present by Weight on Cement) silica fume increase the water quantity in cement slurry that improve its durability and to reduce the strength retrogression in High Temperature High Pressure (HTHP) environment. Results were achieved through HTHP OFITE Viscometer (Model 1100).


2011 ◽  
Vol 361-363 ◽  
pp. 487-492
Author(s):  
Sheng Lai Guo ◽  
Yu Huan Bu

The fluid loss control additive plays a key role in reducing reservoir damage and improving the cementing quality of an oil well. Aiming at good fluid loss control ability and excellent dispersibility, a new dispersive type fluid loss control additive was synthesized through orthogonal experiment with 2-acrylamido-2- methyl propane sulfonic acid, acrylamide, N, N-dimethylacrylamide and maleic anhydride. The orthogonal experiment result shows that the influence on the properties of FLCA decreases in the order: PH value > monomer concentration > monomer mole ratio > initiator concentration > temperature. The result indicates that the optimal conditions for FLCA were 4/2.5/2.5/1 of mole ratio of AMPS/AM /NNDMA/MA, 32.5% total monomer concentration in deionized water, 1.0% (by weight of monomer) ammonium persulfate/sodium bisulfite, 4 of PH value, 40°Cof temperature. The synthesized copolymer was identified by FTIR analysis. The results show the dispersive type fluid loss control additive has excellent dispersibility, fluid loss control ability, thermal resistant and salt tolerant ability. As the temperature increases, the thickening time of the slurry containing the synthesized additive reduces. The copolymer is expected to be a good fluid loss control additive.


2014 ◽  
Vol 34 (5) ◽  
pp. 405-413
Author(s):  
Xianru He ◽  
Qian Chen ◽  
Chunhui Feng ◽  
Liang Wang ◽  
Hailong Hou

Abstract High performance cement slurry polymer modifiers are increasingly in demand in the cementing process of oil and gas. A new polymer modifier with outstanding fluid loss control and high strength and toughness was synthesized by the main monomers butyl acrylate (BA), methyl methacrylate (MMA), acrylamide (AM), the functional monomers vinyltriethoxysilane (VTS), glycidyl methacrylate (GMA) and the initiator of ammonium persulfate (APS) through emulsion polymerization. By using Fourier transform infrared (FTIR) spectrometer, a laser particle analyzer, a scanning electron microscope and a differential scanning calorimeter, we studied the mechanism of fluid loss control and microstructure of polymer latex cement slurries. The experimental results showed that the copolymer could be crosslinked at 160°C and have the lowest fluid loss control, 12 ml, when the polymer content reached 5%. Acrylate latex modified by the silane coupling agent VTS had excellent performance on fluid loss control, as well as mechanical properties for oil well cement. These results have a potential significant value for the development of a new polymer cement modifier with high thermal stability and durability.


2016 ◽  
Author(s):  
A. Cadix ◽  
J. Wilson ◽  
W. Bzducha ◽  
J.-R. Gomez ◽  
A. Feuillette ◽  
...  

2016 ◽  
Vol 847 ◽  
pp. 485-489
Author(s):  
Xing Cai Zhang ◽  
Xiao Wei Cheng ◽  
Xiao Yang Guo

With the exploration of oil and gas in depth, shallow wells already can’t satisfy the requirement, therefore to explore and develop deep reservoirs is necessary. In the case of deep wells the loop temperature of bottom can reach to 150°C-200°C, which put forward a higher requirement for the high temperature resistance property of cement slurry. At present, many problems existed in the most of high temperature cement slurry. For example, high temperature resistance is not well, cement thickening time can’t adjust easily, mega-thermal sedimentation stability is unsatisfactory, and ultra-retarding phenomenon appeared for the top prone. After research indoors, we developed the ultra-high temperature slurry system by means of the investigation on cementing additives and select proper materials from high temperature resistant fluid loss additives, retarders, flowable agent at the same time. This system needs a lots of properties, such as, adjustable slurry thickening time below 200°C, great slurry sedimentation stability, API loss can be controlled at the range of 0-50ml, insensitive to temperature and density, could be used in low-density and conventional density cement etc. This system be used successfully in the well that loop temperature of bottom reaches to 185°C and get a good effect finally.


2020 ◽  
Vol 993 ◽  
pp. 1341-1350
Author(s):  
Xiu Jian Xia ◽  
Yong Jin Yu ◽  
Jian Zhou Jin ◽  
Shuo Qiong Liu ◽  
Ming Xu ◽  
...  

The conventional oil-well cement dispersant has the characteristics of poor dispersion at high temperature, poor compatibility with other additives, and environmental pollution during the production process. In this article, with ultra-early strong polyether monomer, acrylic acid, 2-acrylamine-2-methylpropyl sulfonic acid, sodium methacrylate as copolymer monomers, an environmentally friendly polycarboxylic acid dispersant, DRPC-1L, was prepared by the aqueous solution free-radical polymerization. The chemical composition and thermal stability of the synthetic copolymer were characterized by FTIR and TGA techniques. The evaluation results show that DRPC-1L has a wide temperature range (30~210 °C), good salt-resistance and dispersing effect. It can significantly improve the rheological performance of cement slurry, and it is well matched with oil-well cement additives such as fluid loss agent, retarder and so on. Moreover, it is beneficial to the mechanical strength development of set cement, especially the early compressive strength. It can also inhibit the abnormal gelation phenomenon of cement slurry, flash set, that occurs during high temperature thickening experiments, which plays an important role in enhancing the comprehensive performance of cement slurry. Consequently, the novel polycarboxylic acid dispersant has good application prospects in deep and ultra-deep wells cementing.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ming Li ◽  
Dongbo Xie ◽  
Zihan Guo ◽  
Ya Lu ◽  
Xiaoyang Guo

A terpolymer comprised of sodium styrene sulfonate (SSS), fumaric acid (FA), and acrylamide (AM) was synthesized by aqueous free radical copolymerization and evaluated as fluid loss additive for oil well cement. The chemical structure and performance of the terpolymer were characterized by Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA); the molecular weight and its distribution were determined by gel permeation chromatography (GPC). The optimum reaction conditions of polymerization were obtained: a reaction temperature of 50°C, a mass ratio of SSS/FA/AM 4 : 2 : 14, initiator 0.1%, and reaction time of 4 h; characterization indicated that the SSS/FA/AM had a certain molecular weight and excellent temperature-resistant and salt-resistant properties. The results show that SSS/FA/AM has a good fluid loss performance, in which the API fluid loss of the oil cement slurry could be controlled within 100 mL at 160°C. In addition, it had little effect on the cement compressive strength. The results of scanning electron microscopy (SEM) of the filter cake showed that SSS/FA/AM could be adsorbed on the surface of the cement particles and produce a hydrated layer to prevent fluid loss from the oil well cement.


Sign in / Sign up

Export Citation Format

Share Document