Influences Of Polymer Solution Properties On Flow In Porous Media

1979 ◽  
Author(s):  
Fred H.L. Wang
Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1225 ◽  
Author(s):  
Xiankang Xin ◽  
Gaoming Yu ◽  
Zhangxin Chen ◽  
Keliu Wu ◽  
Xiaohu Dong ◽  
...  

The flow of polymer solution and heavy oil in porous media is critical for polymer flooding in heavy oil reservoirs because it significantly determines the polymer enhanced oil recovery (EOR) and polymer flooding efficiency in heavy oil reservoirs. In this paper, physical experiments and numerical simulations were both applied to investigate the flow of partially hydrolyzed polyacrylamide (HPAM) solution and heavy oil, and their effects on polymer flooding in heavy oil reservoirs. First, physical experiments determined the rheology of the polymer solution and heavy oil and their flow in porous media. Then, a new mathematical model was proposed, and an in-house three-dimensional (3D) two-phase polymer flooding simulator was designed considering the non-Newtonian flow. The designed simulator was validated by comparing its results with those obtained from commercial software and typical polymer flooding experiments. The developed simulator was further applied to investigate the non-Newtonian flow in polymer flooding. The experimental results demonstrated that the flow behavior index of the polymer solution is 0.3655, showing a shear thinning; and heavy oil is a type of Bingham fluid that overcomes a threshold pressure gradient (TPG) to flow in porous media. Furthermore, the validation of the designed simulator was confirmed to possess high accuracy and reliability. According to its simulation results, the decreases of 1.66% and 2.49% in oil recovery are caused by the difference between 0.18 and 1 in the polymer solution flow behavior indexes of the pure polymer flooding (PPF) and typical polymer flooding (TPF), respectively. Moreover, for heavy oil, considering a TPG of 20 times greater than its original value, the oil recoveries of PPF and TPF are reduced by 0.01% and 5.77%, respectively. Furthermore, the combined effect of shear thinning and a threshold pressure gradient results in a greater decrease in oil recovery, with 1.74% and 8.35% for PPF and TPF, respectively. Thus, the non-Newtonian flow has a hugely adverse impact on the performance of polymer flooding in heavy oil reservoirs.


2013 ◽  
Vol 433-435 ◽  
pp. 1933-1936
Author(s):  
Jing Wen Cui ◽  
Zhi Shang Liu ◽  
Yu Chen Zhang

Extra-heavy oil, polymer solution and some drilling fluids are typical non-Newtonian Herschel-Bulkley fluids, which behave as sheer-thinning with yield stress. In this paper, the Generalized Darcy's law for Herschel-Bulkley fluids flow in porous media was formulated, by the same way formulating the Generalized Darcy's Law for Bingham fluids. Then, the applications of the two type flow models were compared; Bingham type model was still widely applied due to its conciseness and relatively satisfied accuracy. In addition, the Generalized Darcys Law was revised to describe thixotropic non-Newtonian fluids conceptually.


1970 ◽  
Vol 10 (02) ◽  
pp. 111-118 ◽  
Author(s):  
A. Herbert Harvey ◽  
D.E. Menzie

Abstract A method is described for the analysis of rate-dependent effects in the flow of polymer solutions through unconsolidated porous media. Experimental data are presented for solutions of polyacrylamide, polyethylene oxide, and polyacrylamide, polyethylene oxide, and polysaccharide. polysaccharide Introduction A major obstacle to wider use of polymer flooding seems to be the lack of a satisfactory method for predicting the performance of this oil recovery predicting the performance of this oil recovery process. Although it is frequently possible to process. Although it is frequently possible to predict that a polymer flood would recover more oil predict that a polymer flood would recover more oil from a reservoir than could be produced with a waterflood, it is difficult to make a realistic economic comparison of the two processes. Waterflood prediction techniques which consider areal sweep and reservoir stratification have been used to evaluate the effect of improved mobility ratio on oil recovery. If accurate relative permeability data are available and if stratigraphic permeability data are available and if stratigraphic variations in the reservoir are known, then these prediction techniques may lead to a rough prediction techniques may lead to a rough approximation of the performance of a polymer flood. However, such prediction techniques fail to consider that the apparent flow resistance to a polymer solution depends on flow velocity as well polymer solution depends on flow velocity as well as permeability. These rate-dependent effects may be significant in a pattern flood, since fluid velocity is not constant. They may also be significant in a heterogeneous reservoir. Under favorable conditions some rate-dependent fluids will tend to even out the flood front in a stratified reservoir and thereby increase oil recovery. This effect cannot be anticipated with conventional waterflood prediction techniques. The basis for much of the difficulty in predicting the performance of a polymer flood is a lack of understanding of the behavior of high molecular weight polymer solutions flowing through porous materials. Until we are able to predict how these solutions will flow through a simple system such as a glass bead pack, it seems unlikely that we will be able to develop a realistic mathematical model to describe the much more complex problem of flow in an oil reservoir. It is the purpose of this study to develop a method for investigating the flow of these high molecular weight polymer solutions through unconsolidated porous media and to study the rheologic properties of solutions of certain polymers which, are of interest from the standpoint of possible application to polymer flooding. EQUATIONS DESCRIBING NON-NEWTONIAN FLOW IN POROUS MEDIA In analogy to the Blake-Kozeny equation for Newtonian fluids, equations have been developed to describe the flow of certain non-Newtonian fluids through porous media. These relationships are based on the assumptions that the fluid behavior may be approximated by the "power law" (Ostwaldde Waele flow model) and that the hydraulic radius concept is applicable to the porous media. If we write the power (1) lawmr  =  m y , and let N = Reynolds number for porous mediaRe f* = friction factor for porous media W = mass velocity dp = particle diameter of porous media 0 = porosity p = fluid density, the relationships may be written (2)L 2 1-0W d 3* pd pf  = (3)NRE * 1f  =  ----- , SPEJ P. 111


2010 ◽  
Vol 13 (11) ◽  
pp. 1033-1037
Author(s):  
Muhammad R. Mohyuddin ◽  
S. Islam ◽  
A. Hussain ◽  
A. M. Siddiqui

2019 ◽  
Vol 4 (9) ◽  
Author(s):  
Marcel Moura ◽  
Eirik Grude Flekkøy ◽  
Knut Jørgen Måløy ◽  
Gerhard Schäfer ◽  
Renaud Toussaint

Sign in / Sign up

Export Citation Format

Share Document