The Role of Cut-offs in Integrated Reservoir Studies

2005 ◽  
Vol 8 (04) ◽  
pp. 276-290 ◽  
Author(s):  
Paul F. Worthington ◽  
Luca Cosentino

Summary There have been many different approaches to quantifying cutoffs, with no single method emerging as the definitive basis for delineating net pay. Yet each of these approaches yields a different reservoir model, so it is imperative that cutoffs be fit for purpose (i.e., they are compatible with the reservoir mechanism and with a systematic methodology for the evaluation of hydrocarbons in place and the estimation of ultimate hydrocarbon recovery).These different requirements are accommodated by basing the quantification of cutoffs on reservoir-specific criteria that govern the storage and flow of hydrocarbons. In so doing, particular attention is paid to the relationships between the identification of cutoffs and key elements of the contemporary systemic practice of integrated reservoir studies. The outcome is a structured approach to the use of cutoffs in the estimation of ultimate hydrocarbon recovery. The principal benefits of a properly conditioned set of petrophysical cutoffs are a more exact characterization of the reservoir with a better synergy between the static and dynamic reservoir models, so that an energy company can more fully realize the asset value. Introduction In a literal sense, cutoffs are simply limiting values. In the context of integrated reservoir studies, they become limiting values of formation parameters. Their purpose is to eliminate those rock volumes that do not contribute significantly to the reservoir evaluation product. Typically, they have been specified in terms of the physical character of a reservoir. If used properly, cutoffs allow the best possible description and characterization of a reservoir as a basis for simulation. Yet, although physical cutoffs have been used for more than 50 years, there is still no rationalized procedure for identifying and applying them. The situation is compounded by the diverse approaches to reservoir evaluation that have been taken over that period, so that even the role of cutoffs has been unclear. These matters assume an even greater poignancy in contemporary integrated reservoir studies, which are systemic rather than parallel or sequential in nature, so that all components of the evaluation process are interlinked and, therefore, the execution of anyone of these tasks has ramifications for the others (Fig. 1). A particular aspect of the systemic approach is the provision for iteration as the reservoir knowledge-base advances. For example, simulation may be used in development studies to identify the most appropriate reservoir-depletion mechanism, but, once the development plan has been formulated, the dynamic model is retuned and progressively updated as development gets under way. The principal use of cutoffs is to delineate net pay, which can be described broadly as the summation of those depth intervals through which hydrocarbons are (economically) producible. In the context of integrated reservoir studies, net pay has an important role to play both directly and through a net-to-gross pay ratio. Net pay demarcates those intervals around a well that are the focus of the reservoir study. It defines an effective thickness that is pertinent to the identification of hydrocarbon flow units, that identifies target intervals for well completions and stimulation programs, and that is needed to estimate permeability through the analysis of well-test data. The net-to-gross pay ratio is input directly to volumetric computations of hydrocarbons in place and thence to "static" estimates of ultimate hydrocarbon recovery; it is a key indicator of hydrocarbon connectivity, and it contributes to the initializing of a reservoir simulator and thence to "dynamic" estimates of ultimate hydrocarbon recovery.

Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


2003 ◽  
Vol 31 (3) ◽  
pp. 132-158 ◽  
Author(s):  
R. E. Okonieski ◽  
D. J. Moseley ◽  
K. Y. Cai

Abstract The influence of tread designs on tire performance is well known. The tire industry spends significant effort in the development process to create and refine tread patterns. Creating an aesthetic yet functional design requires characterization of the tread design using many engineering parameters such as stiffness, moments of inertia, principal angles, etc. The tread element stiffness is of particular interest because of its use to objectively determine differences between tread patterns as the designer refines the design to provide optimum levels of performance. The tread designer monitors the change in stiffness as the design evolves. Changes to the geometry involve many attributes including the number of sipes, sipe depth, sipe location, block element edge taper, nonskid depth, area net-to-gross, and so forth. In this paper, two different formulations for calculating tread element or block stiffness are reviewed and are compared to finite element results in a few cases. A few simple examples are shown demonstrating the basic functionality that is possible with a numerical method.


Author(s):  
Natalia Carolina Petrillo

ResumenEn el presente trabajo se intentará mostrar que la fenomenología no conduce a una postura solipsista. Para ello, se caracterizará en qué consiste el solipsismo. Luego, se intentará refutar a lo que se ha de llamar “solipsismo metafísico” y “solipsismo gnoseológico”, con el objetivo principal de poner de manifiesto el fundamento de motivación para la salida de la ficción solipsista.Palabras claves:Phenomenology – solipsim – empatía - HusserlAbstractWith the aim of showing that phenomenology does not lead in solipsism, I will first attempt a characterization of it. Then, I will attempt a refutation of the so-called “metaphysical” and “epistemological” solipsisms. Finally, the nature and role of Husserl´s solipsistic fiction is examined, and the grounds that motivate the overcoming of this standpoint are disclosed.key wordsFenomenología – solipsismo - empathy – Husserl


2020 ◽  
Vol 11 (1) ◽  
pp. 144-148
Author(s):  
Liuba Zlatkova ◽  

The report describes the steps for creating a musical tale by children in the art studios of „Art Workshop“, Shumen. These studios are led by students volunteers related to the arts from pedagogical department of Shumen University, and are realized in time for optional activities in the school where the child studies. The stages of creating a complete product with the help of different arts are traced – from the birth of the idea; the creation of a fairy tale plot by the children; the characterization of the fairy-tale characters; dressing them in movement, song and speech; creating sets and costumes and creating a finished product to present on stage. The role of parents as a link and a necessary helper for children and leaders is also considered, as well as the positive psychological effects that this cooperation creates.


Sign in / Sign up

Export Citation Format

Share Document