The Dynamic Bottomhole Pressure Management: A Necessity to Gravel Packing Long Horizontal Wells With Low Fracture Gradients

Author(s):  
Zhongming Chen ◽  
Rudolf John Novotny
1987 ◽  
Author(s):  
R.R. Anderson ◽  
W. Dickinson ◽  
H. Dykstra

2004 ◽  
Author(s):  
Zhongming Chen ◽  
Rudolf J. Novotny ◽  
Rodrigo Farias ◽  
Alfredo Mendez ◽  
Carlos A. Pedroso ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tianyi Tan ◽  
Hui Zhang ◽  
Xusheng Ma ◽  
Yufei Chen

Wellbore instability is a frequent problem of shale drilling. Accurate calculation of surge-swab pressures in tripping processes is essential for wellbore pressure management to maintain wellbore stability. However, cutting plugs formed in shale horizontal wells have not been considered in previous surge-swab pressure models. In this paper, a surge-swab pressure model considering the effect of cutting plugs is established for both open pipe string and closed pipe string conditions; In this model, the osmotic pressure of a cutting plug is analyzed. The reduction of cutting plug porosity due to shale hydration expansion and dispersion is considered, ultimately resulting in an impermeable cutting plug. A case study is conducted to analyze swab pressures in a tripping out process. The results show that, in a closed pipe condition, the cutting plug significantly increases the swab pressures below it, which increase with the decrease of cutting plug porosity and the increase of cutting plug length. Under the give condition, the swab pressure at the bottom of the well increases from 3.60 MPa to 8.82 MPa due to the cutting plug, increasing by 244.9%. In an open pipe string condition, the cutting plug affects the flow rate in the pipes and the annulus, resulting in a higher swab pressure above the cutting plug compared to a no-cutting plug annulus. The difference increases with the decrease of the porosity and the increase of the length and the measured depth of the cutting plug. Consequently, the extra surge-swab pressures caused by cutting plugs could result in wellbore pressures out of safety mud density window, whereas are ignored by previous models. The model proposes a more accurate wellbore pressure prediction and guarantees the wellbore stability in shale drilling.


2009 ◽  
Vol 24 (04) ◽  
pp. 1-7 ◽  
Author(s):  
Atila F.L. Aragão ◽  
Agostinho Calderon ◽  
Rosana F.T. Lomba ◽  
J. Nuno Moreira ◽  
Andrea de Sá ◽  
...  

2020 ◽  
Vol 10 ◽  
pp. 20-40
Author(s):  
Dinh Viet Anh ◽  
Djebbar Tiab

A technique using interwell connectivity is proposed to characterise complex reservoir systems and provide highly detailed information about permeability trends, channels, and barriers in a reservoir. The technique, which uses constrained multivariate linear regression analysis and pseudosteady state solutions of pressure distribution in a closed system, requires a system of signal (or active) wells and response (or observation) wells. Signal wells and response wells can be either producers or injectors. The response well can also be either flowing or shut in. In this study, for consistency, waterflood systems are used where the signal wells are injectors, and the response wells are producers. Different borehole conditions, such as hydraulically fractured vertical wells, horizontal wells, and mixed borehole conditions, are considered in this paper. Multivariate linear regression analysis was used to determine interwell connectivity coefficients from bottomhole pressure data. Pseudosteady state solutions for a vertical well, a well with fully penetrating vertical fractures, and a horizontal well in a closed rectangular reservoir were used to calculate the relative interwell permeability. The results were then used to obtain information on reservoir anisotropy, high-permeability channels, and transmissibility barriers. The cases of hydraulically fractured wells with different fracture half-lengths, horizontal wells with different lateral section lengths, and different lateral directions are also considered. Different synthetic reservoir simulation models are analysed, including homogeneous reservoirs, anisotropic reservoirs, high-permeability-channel reservoirs, partially sealing barriers, and sealing barriers.The main conclusions drawn from this study include: (a) The interwell connectivity determination technique using bottomhole pressure fluctuations can be applied to waterflooded reservoirs that are being depleted by a combination of wells (e.g. hydraulically fractured vertical wells and horizontal wells); (b) Wellbore conditions at the observations wells do not affect interwell connectivity results; and (c) The complex pressure distribution caused by a horizontal well or a hydraulically fractured vertical well can be diagnosed using the pseudosteady state solution and, thus, its connectivity with other wells can be interpreted.


Energy ◽  
2021 ◽  
Vol 219 ◽  
pp. 119585
Author(s):  
Yanlong Li ◽  
Nengyou Wu ◽  
Deli Gao ◽  
Qiang Chen ◽  
Changling Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document