scholarly journals Study on the Surge-Swab Pressure considering the Effect of the Cutting Plug in Shale Drilling

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tianyi Tan ◽  
Hui Zhang ◽  
Xusheng Ma ◽  
Yufei Chen

Wellbore instability is a frequent problem of shale drilling. Accurate calculation of surge-swab pressures in tripping processes is essential for wellbore pressure management to maintain wellbore stability. However, cutting plugs formed in shale horizontal wells have not been considered in previous surge-swab pressure models. In this paper, a surge-swab pressure model considering the effect of cutting plugs is established for both open pipe string and closed pipe string conditions; In this model, the osmotic pressure of a cutting plug is analyzed. The reduction of cutting plug porosity due to shale hydration expansion and dispersion is considered, ultimately resulting in an impermeable cutting plug. A case study is conducted to analyze swab pressures in a tripping out process. The results show that, in a closed pipe condition, the cutting plug significantly increases the swab pressures below it, which increase with the decrease of cutting plug porosity and the increase of cutting plug length. Under the give condition, the swab pressure at the bottom of the well increases from 3.60 MPa to 8.82 MPa due to the cutting plug, increasing by 244.9%. In an open pipe string condition, the cutting plug affects the flow rate in the pipes and the annulus, resulting in a higher swab pressure above the cutting plug compared to a no-cutting plug annulus. The difference increases with the decrease of the porosity and the increase of the length and the measured depth of the cutting plug. Consequently, the extra surge-swab pressures caused by cutting plugs could result in wellbore pressures out of safety mud density window, whereas are ignored by previous models. The model proposes a more accurate wellbore pressure prediction and guarantees the wellbore stability in shale drilling.

2020 ◽  
Vol 10 (2) ◽  
pp. 36-53
Author(s):  
Hussein Saeed Almalikee ◽  
Fahad M. Al-Najm

Directional and horizontal wellbore profiles and optimization of trajectory to minimizeborehole problems are considered the most important part in well planning and design. Thisstudy introduces four types of directional and horizontal wells trajectory plans for Rumailaoilfield by selecting the suitable kick off point (KOP), build section, drop section andhorizontal profile. In addition to the optimized inclination and orientation which wasselected based on Rumaila oilfield geomechanics and wellbore stability analysis so that theoptimum trajectory could be drilled with minimum wellbore instability problems. The fourrecommended types of deviated wellbore trajectories include: Type I (also called Build andHold Trajectory or L shape) which target shallow to medium reservoirs with lowinclination (20o) and less than 500m step out, Type II (S shape) that can be used topenetrate far off reservoir vertically, Type III (also called Deep Kick off wells or J shape)these wells are similar to the L shape profile except the kickoff point is at a deeper depth,and design to reach far-off targets (>500m step out) with more than 30o inclination, andfinally Type IV (horizontal) that penetrates the reservoir horizontally at 90o. The study alsorecommended the suitable drilling mud density that can control wellbore failure for the fourtypes of wellbore trajectory.


2021 ◽  
Author(s):  
Ernesto Gomez Samuel Gomez ◽  
Raider Rivas ◽  
Ebikebena Ombe ◽  
Sajjad Ahmed

Abstract Background Drilling deviated and horizontal high-pressure, high-temperature (HPHT) wells is associated with unique drilling challenges, especially when formation heterogeneity, variation in formation thickness as well as formation structural complexities are encountered while drilling. One of the major challenges encountered is the difficulty of landing horizontal lateral within the thin reservoir layers. Geomechanical modeling has proven to be a vital tool in optimizing casing setting depths and significantly increasing the possible lateral length within hydrocarbon bearing reservoirs. This approach ultimately enhanced the production output of the wells. In a particular field, the horizontal wells are constructed by first drilling 8 3/8" hole section to land about 5 to 10’ into the impervious cap rock just above the target reservoir. The 7" casing is then run and cemented in place, after which the horizontal hole section, usually a 5 7/8" lateral, is drilled by geosteered within the target reservoir to access its best porosity and permeability. Due to the uncertainty of the cap rock thickness, setting the 7" liner at this depth was necessary to avoid drilling too deep into the cap rock and penetrating the target reservoir. This approach has its disadvantages, especially while drilling the 5-7/8" lateral. Numerous drilling challenges were encountered while drilling the horizontal lateral across the hard cap rock. like severe wellbore instability, low ROP and severe drillstring vibration. To mitigate the challenges mentioned above, geomechanical modelling was introduced into the well planning process to optimize the 8 3/8" hole landing depth within the cap rock, thereby reducing the hard caprock interval to be drilled in the next section. Firstly, actual formation properties and in-situ rock stress data were obtained from logs taken in previously drilled wells in the field. This information was then fed into in the geomechanical models to produce near accurate rock properties and stresses values. Data from the formation fracture strength database was also used to calibrate the resulting horizontal stresses and formation breakdown pressure. In addition to this, the formation pore pressure variability was established with the measured formation pressure data. The porosity development information was also used to determine the best landing depths to isolate and case-off the nonreservoir formations. Combined with in-depth well placement studies to determine the optimal well trajectory and wellbore landing strategy, geomechanical modelling enabled the deepening of the 8 3/8" landing depth without penetrating the hydrocarbon reservoir. The geomechanical models were also updated with actual well data in real time and allowed for the optimization of mud weight on the fly. This strategy minimized near wellbore damage across the reservoir section and ultimately improved the wells productivity index. Deepening of the 8 3/8" landing depth and minimizing the footage drilled across the hard and unstable caprock positively impacted the overall well delivery process from well planning and drilling operations up to production. The following achievements were realized in recent wells where geomechanical modelling was applied: The initiative helped in drilling more stable, in-gauge holes across the reservoir sections, which were less prone to wellbore stability problems during drilling and logging operations.Downhole drilling tools were less exposed to harsh drilling conditions and delivered higher performance along with longer drilling runs.Better hole quality facilitated the running of multistage fracture completions which, in turn, contributed to increase the overall gas production, fulfilling the objectives of the reservoir development team.The net-to-gross ratio of the pay zone was increased, thereby improving the efficiency of the multistage fracture stages, and allowing the reservoir to be produced more efficiently.


Author(s):  
Nubia Aurora González Molano ◽  
José Alvarellos Iglesias ◽  
Pablo Enrique Vargas Mendoza ◽  
M. R. Lakshmikantha

Several wellbore instability problems have been encountered during drilling a shale formation in an offshore field, leading to the collapse of the main borehole and resulting in several sidetracks. In this study, an integrated 1D & 3D Geomechanical model was built for the field in order to investigate the major factors that control the instability problems from a Geomechanical point of view and to design an optimum mud window for planned wells in the field. Effect of bedding on wellbore stability was the most important factor to explain the observed drilling events. Optimized well paths for planned wells were proposed based on results of a sensitivity analysis of the effect of bedding orientation on wellbore stability. It has been observed that bedding exposed depends not only on well inclination but also on dip of the formation, attack angle, and azimuth.


2021 ◽  
Vol 54 (2E) ◽  
pp. 38-58
Author(s):  
Abbas Dakhiel

Wellbore instability in the Zubair oil field is the main problem in drilling operations. This instability of the wellbore causes several problems including poor hole cleaning, tight hole, stuck pipe, lost circulation, bad cementing, and well kick or blowout that lead to an increase in the nonproductive time. This article aims to set up an appropriate drilling plan that mitigates these instability issues for further well drilling. Field data from six wells (logs, drilling and geological reports as well as offset well tests) were used to build a one-dimensional mechanical earth modeling for each well. The constructed model of selected wells was combined to construct the three-dimensional mechanical earth modeling, which can enable the distribution of all estimated geomechanical parameters along the field of interest. The results revealed that the strip slip and normal faults are the common fault regimes in Zubair oil field located in carbonate rocks and clastic rocks, respectively. The Mogi-Coulomb failure criterion is conservative in determining the minimum and maximum mud weight, and it agrees with the determination of real failure from the image/and caliper logs. The best direction to drill the deviated and horizontal wells was towards the minimum horizontal stress with 140o azimuth from the north. The recommended ranges of mud weight along the sections of 12.25" and 8.5" of the highly deviated and horizontal wells were (between 1.46 and 1.58 gm/cm3) without any expected wellbore instability problems. Based on the outcomes of 3D model, it is expected that the wellbore instability issues are most likely to occur in the domes of; Shauiba and Hamma and in formations; Tanuma, Khasib and Nahr-Umr. In contrast the less wellbore instability problems are expected to expose in Rafidya dome. The study presents an appropriate mud window that can be used to design to minimize the wellbore stability problems when new wells will be drilled in Zubair oil field.


2012 ◽  
Vol 616-618 ◽  
pp. 970-974
Author(s):  
Tian Tai Li ◽  
Ming Zhang

It is accepted that the water flux in/out of the shale during drilling is the key factor, which controls wellbore instability. This flow can be divided into two components:1) the hydraulic flow due to the difference between the wellbore and pore hydraulic pressure; 2) the osmotic flow due to the imbalance between activities of the shale and the drilling fluid. The former can be prevented by adjusting the wellbore hydraulic pressure balance in the well hole, while the latter is much more difficult to control . The water activity of shale is a controlling factor in many areas of drilling. It impacts all situations wherein the temperature or the stress state of a shale is altered such as in wellbore stability, drilling rate and hydraulic fracturing. This chemical “potential activity interaction” produces a mechanical failure due to the movement of water in/out of shales. In order to have no shale alteration, it requires that the chemical potential of each component must be the same in all phases. This is seldom the case. After a lot of studies the shale activity is shown to be a function of pressure and temperature. Results showed inverse relationship between the platelet distance and the shale water activity. This experimental method proves to be a reliable and efficient way for studying the relationships for the shale water activity, comfining pressure, temperature, and platelet distance.


2010 ◽  
Vol 160-162 ◽  
pp. 768-772
Author(s):  
Ding Feng ◽  
Liu Li ◽  
Hai Xiong Tang

Proper wellbore pressure management is a critical part of the drilling practice, where static and dynamic fluid pressures are used to contain formation pressures and assure wellbore stability, to solve the problem; the anti-flushing device is has been developed. The anti-flushing device is designed to counter downhole pressure increase due to safety of narrow mud window and the key to fast drilling. Reasonable control anti-flushing device is the best way to solve the safety of narrow mud window and the key to fast drilling. This paper describes the anti-flushing device, which is run as an integral part of the drill string. The anti-flushing device has been built to operate the 8-1/2 "section of well drilling, keeping continuous loop, To avoiding annular cutting is sank into accumulation when the drill string were connected and the pump stopped, cleaning the small hole by maximum.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4019
Author(s):  
Wang ◽  
Weijermars

This study presents a new interface for wellbore stability analysis, which visualizes and quantifies the stress condition around a wellbore at shear and tensile failure. In the first part of this study, the Mohr–Coulomb, Mogi–Coulomb, modified Lade and Drucker–Prager shear failure criteria, and a tensile failure criterion, are applied to compare the differences in the critical wellbore pressure for three basin types with Andersonian stress states. Using traditional wellbore stability window plots, the Mohr–Coulomb criterion consistently gives the narrowest safe mud weight window, while the Drucker–Prager criterion yields the widest window. In the second part of this study, a new type of plot is introduced where the safe drilling window specifies the local magnitude and trajectories of the principal deviatoric stresses for the shear and tensile wellbore failure bounds, as determined by dimensionless variables, the Frac number (F) and the Bi-axial Stress scalar (χ), in combination with failure criteria. The influence of both stress and fracture cages increases with the magnitude of the F values, but reduces with depth. The extensional basin case is more prone to potential wellbore instability induced by circumferential fracture propagation, because fracture cages persists at greater depths than for the compressional and strike-slip basin cases.


Sign in / Sign up

Export Citation Format

Share Document