Hydraulic Fracture Containment: New Insights Into Mapped Geometry

2015 ◽  
Author(s):  
C.J.. J. de Pater

Abstract Recently, fracture mapping has contributed a vast amount of data on hydraulic fracture geometry showing in general a fairly strong containment of fractures, but it is unclear what explains observed height containment. Re-analysis of published fracture mapping data yields a rule-of-thumb for expected fracture geometry and gives insight into the role of reservoir pressure in the observed containment. Fracture containment is important for designing stimulation treatments that cover the entire pay, without breaching into aquifers or gas caps. Although modern fracture mapping provides the ground truth for post-treatment fracture geometry, it is still important to forecast fracture height growth based on pre-treatment data. Fracture mapping shows that on average, fracture length is five times height. Some, (often depleted) reservoirs show even more extreme containment effects. In addition to stress differences, new mechanisms have been proposed to explain the strong observed containment, such as layer interface opening. Although such mechanisms are quite plausible in some formations, it is unlikely that they provide a universal explanation. New developments in fracture propagation modeling provide a simple mechanism for stronger containment than predicted by conventional models. Laboratory testing indicates that fracture propagation must be described by a cohesive zone at the tip. In such a model, rock ruptures at the fracture tip due to effective stress exceeding strength, which introduces the difference between stress and pore pressure into fracture propagation (Schmitt et al., 1989; Visser, 1998). In the first place this propagation model readily explains high net pressure, while a relatively small stress difference can yield much slower height growth compared with length growth. Furthermore, pore pressure changes upon failure can yield a strong containment effect.

2021 ◽  
Author(s):  
Abu M. Sani ◽  
Hatim S. AlQasim ◽  
Rayan A. Alidi

Abstract This paper presents the use of real-time microseismic (MS) monitoring to understand hydraulic fracturing of a horizontal well drilled in the minimum stress direction within a high-temperature high-pressure (HTHP) tight sandstone formation. The well achieved a reservoir contact of more than 3,500 ft. Careful planning of the monitoring well and treatment well setup enabled capture of high quality MS events resulting in useful information on the regional maximum horizontal stress and offers an understanding of the fracture geometry with respect to clusters and stage spacing in relation to fracture propagation and growth. The maximum horizontal stress based on MS events was found to be different from the expected value with fracture azimuth off by more than 25 degree among the stages. Transverse fracture propagation was observed with overlapping MS events across stages. Upward fracture height growth was dominant in tighter stages. MS fracture length and height in excess of 500 ft and 100 ft, respectively, were created for most of the stages resulting in stimulated volumes that are high. Bigger fracture jobs yielded longer fracture length and were more confined in height growth. MS events fracture lengths and heights were found to be on average 1.36 and 1.30 times, respectively, to those of pressure-match.


SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2292-2307 ◽  
Author(s):  
Jizhou Tang ◽  
Kan Wu ◽  
Lihua Zuo ◽  
Lizhi Xiao ◽  
Sijie Sun ◽  
...  

Summary Weak bedding planes (BPs) that exist in many tight oil formations and shale–gas formations might strongly affect fracture–height growth during hydraulic–fracturing treatment. Few of the hydraulic–fracture–propagation models developed for unconventional reservoirs are capable of quantitatively estimating the fracture–height containment or predicting the fracture geometry under the influence of multiple BPs. In this paper, we introduce a coupled 3D hydraulic–fracture–propagation model considering the effects of BPs. In this model, a fully 3D displacement–discontinuity method (3D DDM) is used to model the rock deformation. The advantage of this approach is that it addresses both the mechanical interaction between hydraulic fractures and weak BPs in 3D space and the physical mechanism of slippage along weak BPs. Fluid flow governed by a finite–difference methodology considers the flow in both vertical fractures and opening BPs. An iterative algorithm is used to couple fluid flow and rock deformation. Comparison between the developed model and the Perkins–Kern–Nordgren (PKN) model showed good agreement. I–shaped fracture geometry and crossing–shaped fracture geometry were analyzed in this paper. From numerical investigations, we found that BPs cannot be opened if the difference between overburden stress and minimum horizontal stress is large and only shear displacements exist along the BPs, which damage the planes and thus greatly amplify their hydraulic conductivity. Moreover, sensitivity studies investigate the impact on fracture propagation of parameters such as pumping rate (PR), fluid viscosity, and Young's modulus (YM). We investigated the fracture width near the junction between a vertical fracture and the BPs, the latter including the tensile opening of BPs and shear–displacement discontinuities (SDDs) along them. SDDs along BPs increase at the beginning and then decrease at a distance from the junction. The width near the junctions, the opening of BPs, and SDDs along the planes are directly proportional to PR. Because viscosity increases, the width at a junction increases as do the SDDs. YM greatly influences the opening of BPs at a junction and the SDDs along the BPs. This model estimates the fracture–width distribution and the SDDs along the BPs near junctions between the fracture tip and BPs and enables the assessment of the PR required to ensure that the fracture width at junctions and along intersected BPs is sufficient for proppant transport.


2012 ◽  
Vol 482-484 ◽  
pp. 1668-1671 ◽  
Author(s):  
Zhi Gang Yuan ◽  
Hong Tu Wang ◽  
Nian Ping Liu

Based on the coal-rock mass deformation model, hydraulic pressure descent model in fracture, fracture propagation model and its growth criterion, the mathematical model of hydraulic fracturing of low permeable coal-rock mass is established, and the influencing factors such as injection pressure, elastic modulus of coal-rock mass and in-situ stress, which affect the characteristics of hydraulic fracture propagation, are studied using the ANSYS software. The results show that fracture length presents a linear increase and widest width increases as an exponent function with the increase of injection pressure, and the ability of making fracture width is greater than fracture length during late fracturing; besides, with the increase of Young’s modulus of coal-rock mass and least horizontal stress, fracture length and widest width decrease, which are independent of maximum horizontal stress. The obtained conclusions provide a guiding role for the optimization of operation parameters of field hydraulic fracturing of low permeable coal-rock.


2019 ◽  
Author(s):  
Jizhou Tang ◽  
Lihua Zuo ◽  
Lizhi Xiao ◽  
Kan Wu ◽  
Bin Qian ◽  
...  

2013 ◽  
Vol 316-317 ◽  
pp. 892-895 ◽  
Author(s):  
Bai Lie Wu ◽  
Yuan Fang Cheng ◽  
You Zhi Li ◽  
Peng Xu ◽  
Yu Ting Zhang

Hydraulic fracturing is one of the effective means to enhance coal bed methane production for vertical wells. This paper presents an approach that uses pseudo-3D fracture propagation model to study the influence of petrophysical properties, differential stress, treatment conditions, etc. on fracture geometry. It is shown that differential stress, pump rate is proportional to fracture length and width; elastic modulus, Poisson`s ratio, pump rate, etc. is proportional to fracture height. The finding is of great importance for acquiring ideal fracture geometry.


Sign in / Sign up

Export Citation Format

Share Document