layered formation
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 7 ◽  
pp. 3737-3749
Author(s):  
Minghui Li ◽  
Fujian Zhou ◽  
Lishan Yuan ◽  
Liang Chen ◽  
Xiaodong Hu ◽  
...  

2021 ◽  
Author(s):  
Takuma Kaneshima ◽  
Fuqiao Bai ◽  
Nobuo Morita

Abstract Borehole stability depends on various parameters such as rock strength, rock deformations, in-situ stress, borehole trajectory, shale swelling, pore pressure change due to osmosis, overbalance mud weight and temperature. The objective of this work is to construct analytical and numerical equations to predict borehole failure including all these parameters, and to comprehensively propose a methodology to improve the borehole stability. Analytical solutions are developed for inclined wells with respect to in-situ stress, shale swelling, pore pressure change due to osmosis, overbalance mud weight and temperature. A numerical model is developed for 3D inclined wells with orthotropic formation and layered formation. Using the analytical and the numerical models, stress state around inclined wells are evaluated. The breakout angle is predicted based on Mohr-Coulomb, Mogi, Lade and Drucker-Prager failure theories. Polar diagrams of mud weights are compared to judge the effect of each parameter and the magnitude predicted by the different failure theories. Shale swelling and pore pressure change due to osmosis are the most difficult to estimate among above-mentioned parameters. The laboratory measured swelling of cores obtained from various formations showed that the magnitude to induce breakouts caused by swelling was the largest comparing with other parameters. Therefore, when shale stability problems occur, we need to estimate the magnitude of shale swelling and osmosis due to water potential difference. Then, to overcome the shale stability problem, we evaluated the sensitivity of human controllable parameters on borehole stability. The parameters which can be controlled by drilling engineers are overbalance, type of mud, borehole temperature and borehole trajectory. If the shale swelling is small, the borehole stability is improved by the mud weight. However, from the swelling tests from the cores of Nankai-Trough, we estimated unless we used a swelling inhibitor to reduce the swelling less than 0.1%, the well was not possible to drill through. Actually, the well was abandoned due to instability after trying side track several times. Unlike previous works, this paper uses all important parameters (swelling, temperature, pore pressure, orthotropic formation, layered formation) to estimate the stresses around inclined wells with the same formation conditions for quantitative analysis. Failure analysis include Mohr, Mogi, Lade and Drucker-Prager. Finally, the polar diagrams of critical mud weight are used to judge whether we can choose well trajectory, orientation with respect to bedding planes, mud weight, shale inhibitor, and temperature to stabilize the borehole.


2021 ◽  
Author(s):  
N.N. Zinchuk

The most important typomorphic indications of clay formations in the studied crusts of weathering are as follows: a) omnipresent dioctahedral hydromica (2М1) in the crust of weathering of terrigenous-carbonate rocks and its association in the most mature profiles with kaolinite of relatively ordered structure, than of kaolinite, having been formed at the expense of other rocks; b) constant availability of trappean formation (tuffs, tufogene rocks, dolerites) in sections of crusts of weathering together with di- and trioctahedral montmorillonite, as well as disordered vermiculite-montmorillonite mixed-layered formation, to this or that degree disordered kaolinite, associated in the crust of weathering of tufogene rocks with halloysite (at complete absence of micaceous minerals in the products of weathering); c) the content in the crust of weathering of kimberlites together with polycationic montmorillonite of a significant quantity of trioctahedral chlorite (packets δ and δ’), serpentine (structural types A and B) and altered to various degree phlogopite, including related with it hydromica 1M.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Zeeshan Tariq ◽  
Mohamed Mahmoud ◽  
Olalekan Alade ◽  
Abdulazeez Abdulraheem ◽  
Ayyaz Mustafa ◽  
...  

Abstract Elastic moduli contrast between the adjacent layers in a layered formation can lead to various problems in a conventional hydraulic fracturing job such as improper fracture height growth, limited penetration in a weaker layer only, and nonconductive fractures. In this study, the results of thermochemical fracturing experiment are presented. The hydraulic fracturing experiments presented in this study were carried out on four-layered very tight cement block samples. The results revealed that the novel fracturing technique can reduce the required breakdown pressure in a layered rock by 26%, from 1495 psi (reference breakdown pressure recorded in the conventional hydraulic fracturing technique) to 1107 psi (breakdown pressure recorded in the thermochemical fracturing). The posttreatment experimental analysis showed that the thermochemical fracturing approach resulted in deep and long fractures, passing through majority of the layers, while conventional hydraulic fracturing resulted in a thin fracture that affected only the top layer. A productivity analysis was also carried out which suggested that the fracturing with thermochemical fluids can raise the oil flowrate up to 76% when compared to a conventional hydraulic fracturing technique. Thermochemical fluids injection caused the creation of microfractures and reduces the linear elastic parameters of the rocks. The new technique is cost effective, nontoxic, and sustainable in terms of no environmental hazards.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4444 ◽  
Author(s):  
Jingxuan Zhang ◽  
Xiangjun Liu ◽  
Xiaochen Wei ◽  
Lixi Liang ◽  
Jian Xiong ◽  
...  

Hydraulic fracture dimension is one of the key parameters affecting stimulated porous media. In actual fracturing, plentiful uncertain parameters increase the difficulty of fracture dimension prediction, resulting in the difficulty in the monitoring of reservoir productivity. In this paper, we established a three-dimensional model to analyze the key factors on the stimulated reservoir volume (SRV), with the response surface method (RSM). Considering the rock properties and fracturing parameters, we established a multivariate quadratic prediction equation. Simulation results show that the interactions of injection rate (Q), Young’s modulus (E) and permeability coefficient (K), and Poisson’s ratio (μ) play a relatively significant role on SRV. The reservoir with a high Young’s modulus typically generates high pressure, leading to longer fractures and larger SRV. SRV reaches the maximum value when E1 and E2 are high. SRV is negatively correlated with K1. Moreover, maintaining a high injection rate in this layered formation with high E1 and E2, relatively low K1, and μ1 at about 0.25 would be beneficial to form a larger SRV. These results offer new perceptions on the optimization of SRV, helping to improve the productivity in hydraulic fracturing.


Sign in / Sign up

Export Citation Format

Share Document