scholarly journals Genome-wide identification and expression analysis of PUB genes in cotton

2019 ◽  
Author(s):  
Xuke Lu ◽  
Na Shu ◽  
Delong Wang ◽  
Junjuan Wang ◽  
Xiugui Chen ◽  
...  

Abstract Background: U-box gene is gene of ubiquitin ligase, which contain U-box domain. Plant U-box gene (PUB) plays an important role in the response to stresses, but less reports about PUBs in cotton were issued. Therefore research of PUBs in cotton will be of great importance and necessity to study the mechanism of tolerance-resistance of the cotton. Results: In this study, we identified 93, 96, 185 and 208 PUBs from the three sequenced cotton species G. raimondii (D5), G. arboreum (A2), G. hirsutum (AD1) and G. arbadense (AD2), respectively. Subcellular localization analysis showed that the PUBs in cotton were distributed in various parts of the cells, mainly in the nucleus. The PUBs in cotton were divided into six subfamilies (A-F) by phylogenetic analysis, and intron/exon structure was comparatively conserved within the subfamily. Location analysis showed cotton PUBs were unevenly anchored on all the chromosomes varying from 1 to 14. It was found that there are 3 tandem duplications and 28 segmental duplications in cotton genome D5, 2 tandem duplications and 25 segmental duplications in A2, and 143 homologous gene pairs between A2 and D5, through multiple sequence alignment, but that the tandem duplication region of A2 or D5 was not found. It was also found that, there were 105, 14 and 17 homologous gene pairs in intra-subgenome of At and Dt, At subgenome, Dt subgenome of allotetraploid cotton, respectively. Among the PUBs family, totally 106, 116, 85 and 81 homologous gene pairs were found in A2-At, A2-Dt, D5-At and D5-Dt. Function analysis of GhPUB85A and GhPUB45D showed they positively responded the abiotic stresses, but the expression patterns were different. Besides, although the expressions of these two homologous genes were similar, their contributions were different when responding to stresses, showing different response differences to abiotic stresses and function division of two subgenomes of G. hirsutum. Conclusion: This study provided the genome-wide identification, structure, evolution and expression analysis of PUBs in cotton, and the results showed that the PUBs was highly conserved in evolutionary history of cotton. All PUB genes were involved in response to abiotic stresses at varying degrees.

2019 ◽  
Author(s):  
Xuke Lu ◽  
Na Shu ◽  
Delong Wang ◽  
Junjuan Wang ◽  
Xiugui Chen ◽  
...  

Abstract Background: U-box gene is gene of ubiquitin ligase, which contain U-box domain. Plant U-box gene (PUB) plays an important role in the response to stresses, but less reports about PUBs in cotton were issued. Therefore research of PUBs in cotton will be of great importance and necessity to study the mechanism of tolerance-resistance of the cotton. Results: In this study, we identified 93, 96, 185 and 208 PUBs from the three sequenced cotton species G. raimondii (D5), G. arboreum (A2), G. hirsutum (AD1) and G. arbadense (AD2), respectively. Subcellular localization analysis showed that the PUBs in cotton were distributed in various parts of the cells, mainly in the nucleus. The PUBs in cotton were divided into six subfamilies (A-F) by phylogenetic analysis, and intron/exon structure was comparatively conserved within the subfamily. Location analysis showed cotton PUBs were unevenly anchored on all the chromosomes varying from 1 to 14. It was found that there are 3 tandem duplications and 28 segmental duplications in cotton genome D5, 2 tandem duplications and 25 segmental duplications in A2, and 143 homologous gene pairs between A2 and D5, through multiple sequence alignment, but that the tandem duplication region of A2 or D5 was not found. It was also found that, there were 105, 14 and 17 homologous gene pairs in intra-subgenome of At and Dt, At subgenome, Dt subgenome of allotetraploid cotton, respectively. Among the PUBs family, totally 106, 116, 85 and 81 homologous gene pairs were found in A2-At, A2-Dt, D5-At and D5-Dt. Function analysis of GhPUB85A and GhPUB45D showed they positively responded the abiotic stresses, but the expression patterns were different. Besides, although the expressions of these two homologous genes were similar, their contributions were different when responding to stresses, showing different response differences to abiotic stresses and function division of two subgenomes of G. hirsutum. Conclusion: This study provided the genome-wide identification, structure, evolution and expression analysis of PUBs in cotton, and the results showed that the PUBs was highly conserved in evolutionary history of cotton. All PUB genes were involved in response to abiotic stresses at varying degrees.


2020 ◽  
Author(s):  
Xuke Lu ◽  
Na Shu ◽  
Delong Wang ◽  
Junjuan Wang ◽  
Xiugui Chen ◽  
...  

Abstract Background: The U-box gene encodes a ubiquitin ligase that contain U-box domain. The plant U-box gene (PUB) plays an important role in the response to stress, but few reports about PUBs in cotton were available. Therefore research on PUBs is of great importance and is a necessity when studying the mechanism of stress tolerance in cotton. Results: In this study, we identified 93, 96, 185 and 208 PUBs from four sequenced cotton species G. raimondii (D5), G. arboreum (A2), G. hirsutum (AD1) and G. barbadense (AD2), respectively. Prediction analysis of subcellular localization showed that the PUBs in cotton were widely distributed in cells, but primarily in the nucleus. The PUBs in cotton were divided into six subfamilies (A-F) on the basis of phylogenetic analysis, and the intron/exon structure was comparatively conserved within each subfamily. Location analysis showed that cotton PUBs were unevenly anchored on all chromosomes, varying from 1 to 14 per chromosome. Through multiple sequence alignment, 3 tandem duplications and 28 segmental duplications in cotton genome D5, 2 tandem duplications and 25 segmental duplications in A2, and 143 homologous gene pairs shared in A2 and D5 were found; however no tandem duplication region in A2 or D5 was found. Additionally, 105, 14 and 17 homologous gene pairs were found in the intra-subgenome of At and Dt, the At subgenome and the Dt subgenome of allotetraploid cotton, respectively. Functional analysis of GhPUB85A and GhPUB45D showed that these genes positively responded to abiotic stresses, but the expression patterns were different. In addition, although the expression levels of these two homologous genes were similar, their contributions were different when responding to stresses, specifically showing different responses to abiotic stresses and functional differences between the two subgenomes of G. hirsutum. Conclusion: This study reports the genome-wide identification, structure, evolution and expression analysis of PUBs in cotton, and the results showed that the PUBs were highly conserved throughout the evolutionary history of cotton. All PUB genes were involved in response to abiotic stresses (including those induced by salt, drought, hot and cold) to varying degrees.


2020 ◽  
Author(s):  
Xuke Lu ◽  
Na Shu ◽  
Delong Wang ◽  
Junjuan Wang ◽  
Xiugui Chen ◽  
...  

Abstract Background: The U-box gene encodes a ubiquitin ligase that contain U-box domain. The plant U-box gene (PUB) plays an important role in the response to stress, but few reports about PUBs in cotton were available. Therefore research on PUBs is of great importance and is a necessity when studying the mechanism of stress tolerance in cotton. Results: In this study, we identified 93, 96, 185 and 208 PUBs from four sequenced cotton species G. raimondii (D5), G. arboreum (A2), G. hirsutum (AD1) and G. barbadense (AD2), respectively. Prediction analysis of subcellular localization showed that the PUBs in cotton were widely distributed in cells, but primarily in the nucleus. The PUBs in cotton were divided into six subfamilies (A-F) on the basis of phylogenetic analysis, and the intron/exon structure was comparatively conserved within each subfamily. Location analysis showed that cotton PUBs were unevenly anchored on all chromosomes, varying from 1 to 14 per chromosome. Through multiple sequence alignment, 3 tandem duplications and 28 segmental duplications in cotton genome D5, 2 tandem duplications and 25 segmental duplications in A2, and 143 homologous gene pairs shared in A2 and D5 were found; however no tandem duplication region in A2 or D5 was found. Additionally, 105, 14 and 17 homologous gene pairs were found in the intra-subgenome of At and Dt, the At subgenome and the Dt subgenome of allotetraploid cotton, respectively. Functional analysis of GhPUB85A and GhPUB45D showed that these genes positively responded to abiotic stresses, but the expression patterns were different. In addition, although the expression levels of these two homologous genes were similar, their contributions were different when responding to stresses, specifically showing different responses to abiotic stresses and functional differences between the two subgenomes of G. hirsutum. Conclusion: This study reports the genome-wide identification, structure, evolution and expression analysis of PUBs in cotton, and the results showed that the PUBs were highly conserved throughout the evolutionary history of cotton. All PUB genes were involved in response to abiotic stresses (including those genes induced by salt, drought, hot and cold) to varying degrees.


2020 ◽  
Author(s):  
Xuke Lu ◽  
Na Shu ◽  
Delong Wang ◽  
Junjuan Wang ◽  
Xiugui Chen ◽  
...  

Abstract Background: The U-box gene encodes a ubiquitin ligase that contain U-box domain. The plant U-box gene (PUB) plays an important role in the response to stresses, but few reports about PUBs in cotton were available. Therefore research on PUBs is of great importance and a necessity when studying the mechanisms of stress- tolerance in cotton.Results: In this study, we identified 93, 96, 185 and 208 PUBs from four sequenced cotton species G. raimondii (D5), G. arboreum (A2), G. hirsutum (AD1) and G. barbadense (AD2), respectively. Prediction analysis of subcellular localization showed that the PUBs in cotton were widely localized in cells, but primarily in the nucleus. The PUBs in cotton were classified into six subfamilies (A-F) on the basis of phylogenetic analysis, which was testified by the analysis of conserved motifs and exon-intron structures. Chromosomal localization analysis showed that cotton PUBs were unevenly anchored on all chromosomes, varying from 1 to 14 per chromosome. Through multiple sequence alignment analysis, 3 tandem duplications and 28 segmental duplications in cotton genome D5, 2 tandem duplications and 25 segmental duplications in A2, and 143 homologous gene pairs in A2 and D5 were found; however no tandem duplications in A2 or D5 were found. Additionally, 105, 14 and 17 homologous gene pairs were found in the intra-subgenome of At and Dt, At sub-genome and Dt sub-genome of G. hirsutum, respectively. Functional analysis of GhPUB85A and GhPUB45D showed that these genes positively responded to abiotic stresses, but the expression patterns were different. In addition, although the expression levels of these two homologous genes were similar, their contributions were different when responding to stresses, specifically showing different responses to abiotic stresses and functional differences between the two subgenomes of G. hirsutum. Conclusion: This study reported the genome-wide identification, structure, evolution and expression analysis of PUBs in cotton, and the results showed that the PUBs were highly conserved throughout the evolutionary history of cotton. All PUB genes were involved in the response to abiotic stresses (including salt, drought, hot and cold) to varying degrees.


2020 ◽  
Author(s):  
Xuke Lu ◽  
Na Shu ◽  
Delong Wang ◽  
Junjuan Wang ◽  
Xiugui Chen ◽  
...  

Abstract Background: The U-box gene encodes a ubiquitin ligase that contain U-box domain. The plant U-box gene (PUB) plays an important role in the response to stresses, but few reports about PUBs in cotton were available. Therefore research on PUBs is of great importance and a necessity when studying the mechanisms of stress- tolerance in cotton. Results: In this study, we identified 93, 96, 185 and 208 PUBs from four sequenced cotton species G. raimondii (D5), G. arboreum (A2), G. hirsutum (AD1) and G. barbadense (AD2), respectively. Prediction analysis of subcellular localization showed that the PUBs in cotton were widely localized in cells, but primarily in the nucleus. The PUBs in cotton were classified into six subfamilies (A-F) on the basis of phylogenetic analysis, which was testified by the analysis of conserved motifs and exon-intron structures. Chromosomal localization analysis showed that cotton PUBs were unevenly anchored on all chromosomes, varying from 1 to 14 per chromosome. Through multiple sequence alignment analysis, 3 tandem duplications and 28 segmental duplications in cotton genome D5, 2 tandem duplications and 25 segmental duplications in A2, and 143 homologous gene pairs in A2 and D5 were found; however no tandem duplications in A2 or D5 were found. Additionally, 105, 14 and 17 homologous gene pairs were found in the intra-subgenome of At and Dt, At sub-genome and Dt sub-genome of G. hirsutum, respectively. Functional analysis of GhPUB85A and GhPUB45D showed that these genes positively responded to abiotic stresses, but the expression patterns were different. In addition, although the expression levels of these two homologous genes were similar, their contributions were different when responding to stresses, specifically showing different responses to abiotic stresses and functional differences between the two subgenomes of G. hirsutum. Conclusion: This study reported the genome-wide identification, structure, evolution and expression analysis of PUBs in cotton, and the results showed that the PUBs were highly conserved throughout the evolutionary history of cotton. All PUB genes were involved in the response to abiotic stresses (including salt, drought, hot and cold) to varying degrees.


2020 ◽  
Author(s):  
Xuke Lu ◽  
Na Shu ◽  
Delong Wang ◽  
Junjuan Wang ◽  
Xiugui Chen ◽  
...  

Abstract Background: The U-box gene encodes a ubiquitin ligase that contain U-box domain. The plant U-box gene (PUB) plays an important role in the response to stresses, but few reports about PUBs in cotton were available. Therefore research on PUBs is of great importance and a necessity when studying the mechanisms of stress- tolerance in cotton.Results: In this study, we identified 93, 96, 185 and 208 PUBs from four sequenced cotton species G. raimondii (D5), G. arboreum (A2), G. hirsutum (AD1) and G. barbadense (AD2), respectively. Prediction analysis of subcellular localization showed that the PUBs in cotton were widely localized in cells, but primarily in the nucleus. The PUBs in cotton were classified into six subfamilies (A-F) on the basis of phylogenetic analysis, which was testified by the analysis of conserved motifs and exon-intron structures. Chromosomal localization analysis showed that cotton PUBs were unevenly anchored on all chromosomes, varying from 1 to 14 per chromosome. Through multiple sequence alignment analysis, 3 tandem duplications and 28 segmental duplications in cotton genome D5, 2 tandem duplications and 25 segmental duplications in A2, and 143 homologous gene pairs in A2 and D5 were found; however no tandem duplications in A2 or D5 were found. Additionally, 105, 14 and 17 homologous gene pairs were found in the intra-subgenome of At and Dt, At sub-genome and Dt sub-genome of G. hirsutum, respectively. Functional analysis of GhPUB85A and GhPUB45D showed that these genes positively responded to abiotic stresses, but the expression patterns were different. In addition, although the expression levels of these two homologous genes were similar, their contributions were different when responding to stresses, specifically showing different responses to abiotic stresses and functional differences between the two subgenomes of G. hirsutum. Conclusions: This study reported the genome-wide identification, structure, evolution and expression analysis of PUBs in cotton, and the results showed that the PUBs were highly conserved throughout the evolutionary history of cotton. All PUB genes were involved in the response to abiotic stresses (including salt, drought, hot and cold) to varying degrees.


2015 ◽  
Vol 57 (9) ◽  
pp. 783-795 ◽  
Author(s):  
Shangguo Feng ◽  
Runqing Yue ◽  
Sun Tao ◽  
Yanjun Yang ◽  
Lei Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Jia ◽  
Cunyao Yan ◽  
Jing Zhang ◽  
Yunxia Cheng ◽  
Wenwen Li ◽  
...  

AbstractJAZ is a plant-specific protein family involved in the regulation of plant development, abiotic stresses, and responses to phytohormone treatments. In this study, we carried out a bioinformatics analysis of JAZ genes in turnip by determining the phylogenetic relationship, chromosomal location, gene structure and expression profiles analysis under stresses. The 36 JAZ genes were identified and classified into four subfamilies (ZML, JAZ, PPD and TIFY). The JAZ genes were located on 10 chromosomes. Two gene pairs were involved in tandem duplication events. We identified 44 collinear JAZ gene pairs in the turnip genome. Analysis of the Ka/Ks ratios indicated that the paralogs of the BrrJAZ family principally underwent purifying selection. Expression analysis suggested JAZ genes may be involved in the formation of turnip tuberous root, and they also participated in the response to ABA, SA, MeJA, salt stress and low-temperature stress. The results of this study provided valuable information for further exploration of the JAZ gene family in turnip.


BIOCELL ◽  
2021 ◽  
Vol 45 (4) ◽  
pp. 1107-1119
Author(s):  
QICHAO WANG ◽  
WUJING ZENG ◽  
BASHARAT ALI ◽  
XUEMIN ZHANG ◽  
LING XU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document