tandem duplications
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 79)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Zhenpan Liu ◽  
Yang Sun ◽  
Dongsheng Li ◽  
Jianyu Song ◽  
Rongsheng Yao ◽  
...  

Abstract GRAS transcription factors play important roles in plant growth, development, and abiotic and biotic stress responses. In this study, the genome-wide identification of the transcription factor family of Actinidia arguta was carried out including an analysis of the physical and chemical properties, phylogenetic development, gene structure, collinearity between genes, and protein interactions. A total of 88 GRAS genes were identified in the genome of Actinidia arguta with protein lengths of 103-510 aa, a molecular mass of 11,603.25-22,457.96 kDa, and isoelectric points in the hydrophilic range between 4.45 and 6.50 From these genes, 67 were located in the nucleus and 21 in the chloroplast. The identified genes were further divided into eight subfamilies: SCR, HAM, DELLA, PAT1, SHR, SCL4/7, and GIGR. Members of the same subfamily had similar gene structures and conserved motifs. Motif 5 was highly conserved in the GRAS family. On the chromosomes of LG3, LG15, LG22, LG24, LG26 and LG28, there was a large number of tandem duplications of GRAS genes, with 64 pairs of genes orthologous with Arabidopsis thaliana. The analysis of protein interactions found that there were interactive relationships between SCL28 in the DLT subfamily and SCL14 in the LISCL subfamily and between SCL13 in the PAT1 subfamily and proteins of the LAS subfamily. Interactions were also observed between the SCL30, SCL33, and HAM4 proteins in the LISCL subfamily. This study, therefore, provides a reference for mining and verification within the GRAS genes in the Actinidia arguta genome.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 2) ◽  
pp. LBA-4-LBA-4
Author(s):  
Masayuki Umeda ◽  
Jing Ma ◽  
Benjamin J. Huang ◽  
Kohei Hagiwara ◽  
Tamara Westover ◽  
...  

Abstract Children with acute myeloid leukemia (AML) have a dismal prognosis due to a high relapse rate; however, the molecular basis leading to relapsed pediatric AML has not yet been fully characterized. To define the spectrum of alterations common at relapse, we performed integrated profiling of 136 relapsed pediatric AML cases with RNA sequencing (RNA-seq), whole-genome sequencing, and target-capture sequencing. In addition to well-characterized fusion oncoproteins, such as those involving KMT2A (n=36, 26.5%) or NUP98 (n=18, 13.2%), we also identified somatic mutations in UBTF (upstream binding transcription factor) in 12 of 136 cases (8.8%) of this relapsed cohort. Somatic alterations of the UBTF gene, which encodes a nucleolar protein that is a component of the RNA Pol I pre-initiation complex to ribosomal DNA promoters, have rarely been observed in AML. In our cohort, all alterations can be described as heterozygous in-frame exon 13 tandem duplications (UBTF-TD), either at the 3' end of exon 13 of UBTF or of the entire exon 13 (Fig. A). As we noticed limited detection in our pipeline as a result of complex secondary indels alongside the duplications, we established a soft-clipped read-based screening method to detect UBTF-TD more efficiently. Applying the screening to RNA-seq data of 417 additional pediatric AMLs from previous studies and our clinical service, we identified 15 additional UBTF-TDs, many of which have not been previously reported. At the amino acid level, UBTF-TDs caused amino acid insertions of variable sizes (15-181 amino acids), duplicating a portion of high mobility group domain 4 (HMG4), which includes short leucine-rich sequences. UBTF-TD AMLs commonly occurred in early adolescence (median age: 12.6, range: 2.4-19.6), and 19 of the total 27 cases had either normal karyotype (n=12) or trisomy 8 (n=7). UBTF-TD is mutually exclusive from other recurrent fusion oncoproteins, such as NUP98 and KMT2A rearrangements (Fig. B), but frequently occurred with FLT3-ITD (44.4%) or WT1 mutations (40.7%). The median variant allele fraction (VAF) of the UBTF-TD was 48.0% (range: 9.7-66.7%). In four cases with data at multiple disease time points, the identical UBTF-TDs were present at high allele fractions at all time points, suggesting that UBTF-TD is a clonal alteration. tSNE analysis of the transcriptome dataset showed that UBTF-TD AMLs share a similar expression pattern with NPM1 mutant and NUP98-NSD1 AML subtypes, including NKX2-3 and HOXB cluster genes (Fig. C) . Altogether, these findings suggest that UBTF-TD is a unique subtype of pediatric AML. To address the impact of UBTF-TD expression in primary hematopoietic cells, we introduced UBTF-TD and UBTF wildtype expression vectors into cord blood CD34+ cells via lentiviral transduction. UBTF-TD expression promotes colony-forming activity and cell growth, yielding cells with a persistent blast-like morphology (Fig. D). Further, transcriptional profiling of these cells demonstrated expression of HOXB genes and NKX2-3, similar to UBTF-TD AMLs in patients, indicating that UBTF-TD is sufficient to induce the leukemic phenotype. To investigate the prevalence of UBTF-TDs in larger de novo AML cohorts, we applied the above UBTF-TD screening method to the available de novo AML cohorts of TCGA (n=151, adult), BeatAML (n=220, pediatric and adult), and AAML1031 (n=1035, pediatric). We identified UBTF-TDs in 4.3% (45/1035) of the pediatric AAML1031 cohort, while the alteration is less common (0.9%: 3/329, p=0.002) in the adult AML cohorts (Fig. E). In the AAML1031 cohort, UBTF-TDs remain mutually exclusive with known molecular subtypes of AML and commonly occur with FLT3-ITD (66.7%) and WT1 (40.0%) mutations and either normal karyotype or trisomy 8. The presence of UBTF-TDs in the AAML1031 cohort is associated with a poor outcome (Fig. F, median overall survival, 2.3 years) and MRD positivity; multivariate analysis revealed that UBTF-TD and WT1 are independent risk factors for overall survival within FLT3-ITD+ AMLs. In conclusion, we demonstrate UBTF-TD defines a unique subtype of AMLs that previously lacked a clear oncogenic driver. While independent of subtype-defining oncogenic fusions, UBTF-TD AMLs are associated with FLT3-ITD and WT1 mutations, adolescent age, and poor outcomes. These alterations have been under-recognized by standard bioinformatic approaches yet will be critical for future risk-stratification of pediatric AML. Figure 1 Figure 1. Disclosures Iacobucci: Amgen: Honoraria; Mission Bio: Honoraria. Miller: Johnson & Johnson's Janssen: Current Employment. Mullighan: Pfizer: Research Funding; Illumina: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Amgen: Current equity holder in publicly-traded company.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. A. Kamp ◽  
B. B. L. G. Lemmens ◽  
R. J. Romeijn ◽  
S. C. Changoer ◽  
R. van Schendel ◽  
...  

AbstractDNA double-strand breaks are a major threat to cellular survival and genetic integrity. In addition to high fidelity repair, three intrinsically mutagenic DNA break repair routes have been described, i.e. single-strand annealing (SSA), polymerase theta-mediated end-joining (TMEJ) and residual ill-defined microhomology-mediated end-joining (MMEJ) activity. Here, we identify C. elegans Helicase Q (HELQ-1) as being essential for MMEJ as well as for SSA. We also find HELQ-1 to be crucial for the synthesis-dependent strand annealing (SDSA) mode of homologous recombination (HR). Loss of HELQ-1 leads to increased genome instability: patchwork insertions arise at deletion junctions due to abortive rounds of polymerase theta activity, and tandem duplications spontaneously accumulate in genomes of helq-1 mutant animals as a result of TMEJ of abrogated HR intermediates. Our work thus implicates HELQ activity for all DSB repair modes guided by complementary base pairs and provides mechanistic insight into mutational signatures common in HR-defective cancers.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tianli Wu ◽  
Yun Zhong ◽  
Min Chen ◽  
Bo Wu ◽  
Ting Wang ◽  
...  

AbstractThe Gibberellic Acid Stimulated Arabidopsis (GASA) proteins were investigated in the study to help understand their possible roles in fruit trees, particularly in Citrus. A total of 18 CcGASA proteins were identified and characterized in Citrus clementina via a genome-wide approach. It was shown that the CcGASA proteins structurally shared a conserved GASA domain but varied considerably in primary sequences and motif compositions. Thus, they could be classified into three major phylogenetic groups, G1~G3, and two groups, G1 and G3 could be further classified into subgroups. The cis- elements on all CcGASA promoters were identified and categorized, and the associated transcription factors were predicted. In addition, the possible interactions between the CcGASA proteins and other proteins were predicted. All the clues suggested that these genes should be involved in defense against biotic and abiotic stresses and in growth and development. The notion was further supported by gene expression analysis that showed these genes were more or less responsive to the treatments of plant hormones (GA3, SA, ABA and IAA), and infections of citrus canker pathogen Xanthomonas citri. It was noted that both the segmental and the tandem duplications had played a role in the expansion of the CcGASA gene family in Citrus. Our results showed that the members of the CcGASA gene family should have structurally and functionally diverged to different degrees, and hence, the representative group members should be individually investigated to dissect their specific roles.


Author(s):  
Yan Zhong ◽  
Ping Wang ◽  
Qinglong Shi ◽  
Zong-Ming Cheng

Presence and absence polymorphisms (PAPs) exist extensively and have been investigated in different organisms. However, PAPs have rarely been detected between strawberry species at the genome level. This study identified the presence and absence genes (P/A genes) between wild strawberry species (Fragaria vesca) and octoploid cultivated species (F. × ananassa) under a relatively strict criterion. In total, 333 P/A genes present in the wild strawberry but absent in the cultivated strawberry were detected. Of the P/A genes, 91.89% (306/333) were single genes, and only 8.11% were confirmed as multi-genes. The majority of the identified P/A genes in Fragaria were generated by tandem duplications. The P/A genes were unevenly distributed on the seven chromosomes of woodland strawberry, and they clustered preferentially near the telomeric regions of the chromosomes. The P/A genes tended to encode proteins with domains closely associated with responses to varying ecological factors, such as PPR, Protein kinases (PKs), NB-ARC, F-box and EF-hand domains. This indicated that the P/A genes were associated with coping with biotic and abiotic stresses to improve the adaptability of plants to changing environments.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 609-609
Author(s):  
Danielle C. Kirkey ◽  
Katherine Tarlock ◽  
Rhonda E. Ries ◽  
Yi-Cheng Wang ◽  
Amanda R. Leonti ◽  
...  

Abstract KMT2A partial tandem duplication (KMT2A-PTD), characterized by a large internal duplication spanning 6-8 exons, has been documented in adult AML with a prevalence of 3-10% and is associated with poor outcomes. Despite the high prevalence of KTM2A fusions and known associated outcomes, prevalence and clinical implications of KMT2A-PTD has not been well characterized in childhood AML. We interrogated the transcriptome and associated clinical and genomic data from pediatric AML patients treated on COG AAML1031 to define the prevalence of KMT2A-PTD, frequency of co-occurring genetic mutations and outcomes associated with this variant. Ribo-depleted RNA seq data from 1,294 patients with AML (age 0-29 years) enrolled on COG AAML1031 with available cytogenetic, molecular, and clinical data were utilized. Gene fusions, internal tandem duplications (ITD) and partial tandem duplications (PTD) were detected by Cicero. Conventional karyotyping and mutational analysis including NGS were used to determine additional cytogenetic and molecular abnormalities. Response was measured by 5-year overall survival (OS), event-free survival (EFS), disease-free survival (DFS) and relapse risk (RR). Of the 1,294 patients studied, KMT2A-PTD was identified in 20 patients (1.5%). Evaluation of karyotype demonstrated striking paucity of karyotypic alterations with 75% with normal karyotype; 3 cases (15%) of trisomy 11 were identified. In contrast to KMT2A-rearranged (KMT2A-r) AML, which has the highest prevalence in young patients (median age 3.3 years), the median age with KMT2A-PTD was 13.4 years (p<0.0001). Further analysis demonstrated a high rate of co-occurrence of FLT3 mutations; 15 patients (75%) had FLT3-ITD (N=13; 65%) and/or FLT3 activating mutations (N=5; 25%). The rate of co-occurring FLT3-ITD was significantly higher in the KMT2A-PTD cohort compared to patients without KMT2A-PTD (65% vs. 19%, p<0.001). Prevalence of KMT2A-PTD in patients with FLT3-ITD was 5.7%. Additional co-occurring genetic mutations were identified in WT1 (20%) and the RAS pathway. There was a striking enrichment of mutations that are commonly associated with AML in older adults with 8/20 patients (40%) harboring mutations in IDH1/IDH2, U2AF1, and TP53, far in excess of what is seen in other pediatric AML patients (Figure 1A). We evaluated the significance of KMT2A-PTD on clinical outcome. Patients with KMT2A-PTD had a poor response to induction therapy with a morphologic CR rate of 45% and rate of residual disease (MRD) positivity by flow cytometry after initial course of therapy was 40%. Additionally, high rates of relapse were noted for patients with KMT2A-PTD with a RR of 53%. EFS for patients with and without KMT2A-PTD was 39% vs. 46%, respectively (p=0.54) with a corresponding OS of 58% and 64% (p=0.61). Outcome analysis for the KMT2A-PTD cohort demonstrated dual KMT2A-PTD/FLT3-ITD patients had an EFS of 46% compared to 29% for KMT2A-PTD/non-ITD patients (p=0.62, Figure 1B). We inquired whether hematopoietic stem cell transplant (HSCT) may modify outcomes in patients with KMT2A-PTD. Of the 20 patients with KMT2A-PTD, 7 (35%) proceeded to HSCT in CR1, with the indication in 6 of 7 patients due to FLT3-ITD high allelic ratio (HAR, ≥0.4). Stem cell transplant recipients had a DFS of 83% vs. 0% for those who continued on protocol chemotherapy (p=0.002, Figure 1C) with corresponding OS of 100% vs. 43%, respectively (p=0.05). In this large cohort of childhood AML patients treated on AAML1031, we identified a small subset of patients with KMT2A-PTD and show the high prevalence of co-occurring FLT3 mutations. Although KMT2A-PTD patients with and without FLT3-ITD had similar outcomes, the cohort who received HSCT in CR1 (most with FLT3-ITD) experienced improved outcomes compared to the rest of the cohort, suggesting that intensification of therapy may benefit this group of patients overall. Further research into KMT2A-PTD in pediatric AML will guide future risk-adapted therapy and enhance understanding of biologic implications of this lesion, including whether altered KMT2A may serve as a therapeutic target as it may for KMT2A-r AML. Figure 1 Figure 1. Disclosures Pollard: Syndax: Membership on an entity's Board of Directors or advisory committees; Kura Oncology: Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Author(s):  
Harrison K Tsai ◽  
Christopher J Gibson ◽  
H Moses Murdock ◽  
Phani Davineni ◽  
Marian H Harris ◽  
...  

KMT2A partial tandem duplication (KMT2A-PTD) at 11q23.3 is associated with adverse risk in AML and MDS, is a potential therapeutic target, and is an attractive marker of measurable residual disease. High initial KMT2A-PTD RNA levels have been linked to poor prognosis, but mechanisms regulating KMT2A-PTD expression are not well understood. While it has been reported that KMT2A-PTD affects only a single allele, it has been theorized but not proven that duplications or genomic gains of a monoallelic KMT2A-PTD may occur, thereby potentially driving high expression and disease progression. Copy neutral loss of heterozygosity (CN-LOH) of 11q has also been described and is known to be associated with mutations in CBL but has not been reported to involve KMT2A-PTD. In this study, we identified 94 patients with KMT2A-PTDs using targeted DNA next-generation sequencing (NGS) and found that 16% (15/94) had complex secondary events, including CN-LOH and selective gain involving the KMT2A-PTD allele. High copy numbers indicating complexity were significantly enriched in AML versus MDS and correlated with higher RNA expression. Moreover, in serial samples, complexity was associated with relapse and secondary transformation. Taken together, we provide approaches to integrate quantitative and allelic assessment of KMT2A-PTDs into targeted DNA NGS and demonstrate that secondary genetic events occur in KMT2A-PTD by multiple mechanisms that may be linked to myeloid disease progression by driving increased expression from the affected allele.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 412
Author(s):  
Liting Liao ◽  
Zhaoyang Hu ◽  
Shiqiang Liu ◽  
Yingui Yang ◽  
Yong Zhou

Germins and germin-like proteins (GLPs) are glycoproteins closely associated with plant development and stress response in the plant kingdom. Here, we carried out genome-wide identification and expression analysis of the GLP gene family in cucumber to study their possible functions. A total of 38 GLP genes were identified in cucumber, which could be mapped to six out of the seven cucumber chromosomes. A phylogenetic analysis of the GLP members from cucumber, Arabidopsis and rice showed that these GLPs could be divided into six groups, and cucumber GLPs in the same group had highly similar conserved motif distribution and gene structure. Gene duplication analysis revealed that six cucumber GLP genes were located in the segmental duplication regions of cucumber chromosomes, while 14 genes were associated with tandem duplications. Tissue expression profiles of cucumber GLP genes showed that many genes were preferentially expressed in specific tissues. In addition, some cucumber GLP genes were differentially expressed under salt, drought and ABA treatments, as well as under DM inoculation. Our results provide important information for the functional identification of GLP genes in the growth, development and stress response of cucumber.


2021 ◽  
Vol 22 (10) ◽  
pp. 3245-3251
Author(s):  
Ismael Al-Arbeed ◽  
Abdulsamad Wafa ◽  
Faten Moassass ◽  
Bassel AL-Halabi ◽  
Walid Al-Achkar ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1994
Author(s):  
Elizabeth Ramage ◽  
Valerie L. Soza ◽  
Jing Yi ◽  
Haley Deal ◽  
Vaidehi Chudgar ◽  
...  

Bilaterally symmetric flowers have evolved over a hundred times in angiosperms, yet orthologs of the transcription factors CYCLOIDEA (CYC), RADIALIS (RAD), and DIVARICATA (DIV) are repeatedly implicated in floral symmetry changes. We examined these candidate genes to elucidate the genetic underpinnings of floral symmetry changes in florally diverse Rhododendron, reconstructing gene trees and comparing gene expression across floral organs in representative species with radial and bilateral flower symmetries. Radially symmetric R. taxifolium Merr. and bilaterally symmetric R. beyerinckianum Koord. had four and five CYC orthologs, respectively, from shared tandem duplications. CYC orthologs were expressed in the longer dorsal petals and stamens and highly expressed in R. beyerinckianum pistils, whereas they were either ubiquitously expressed, lost from the genome, or weakly expressed in R. taxifolium. Both species had two RAD and DIV orthologs uniformly expressed across all floral organs. Differences in gene structure and expression of Rhododendron RAD compared to other asterids suggest that these genes may not be regulated by CYC orthologs. Our evidence supports CYC orthologs as the primary regulators of differential organ growth in Rhododendron flowers, while also suggesting certain deviations from the typical asterid gene regulatory network for flower symmetry.


Sign in / Sign up

Export Citation Format

Share Document