scholarly journals Comprehensive gene expression analysis for exploring the association between glucose metabolism and differentiation of thyroid cancer

2020 ◽  
Author(s):  
Hoon Young Suh ◽  
Hongyoon Choi ◽  
Jin Chul Paeng ◽  
Gi Jeong Cheon ◽  
June-Key Chung ◽  
...  

Abstract Background: The principle of loss of iodine uptake and increased glucose metabolism according to dedifferentiation of thyroid cancer is clinically assessed by imaging. Though these biological properties are widely applied to appropriate iodine therapy, the understanding of the genomic background of this principle is still lacking. We investigated the association between glucose metabolism and differentiation in advanced thyroid cancer as well as papillary thyroid cancer (PTC). Methods: We used RNA sequencing of 505 patients with PTC obtained from the Cancer Genome Archives and microarray data of poorly-differentiated and anaplastic thyroid cancer (PDTC/ATC). The signatures of GLUT and glycolysis were estimated to assess glucose metabolic profiles. The glucose metabolic profiles were associated with tumor differentiation score (TDS) and BRAFV600E mutation status. In addition, survival analysis of glucose metabolic profiles was performed for predicting recurrence-free survival. Results: In PTC, the glycolysis signature was positively correlated with TDS, while the GLUT signature was inversely correlated with TDS. These correlations were significantly stronger in the BRAFV600E negative group than the positive group. Meanwhile, both GLUT and glycolysis signatures were negatively correlated with TDS in advanced thyroid cancer. The high glycolysis signature was significantly associated with poor prognosis in PTC in spite of high TDS. The glucose metabolic profiles are intricately associated with tumor differentiation in PTC and PDTC/ATC. Conclusions: As glycolysis was an independent prognostic marker, we suggest that the glucose metabolism features of thyroid cancer could be another biological progression marker different from differentiation and provide clinical implications for risk stratification.

2019 ◽  
Author(s):  
Hoon Young Suh ◽  
Hongyoon Choi ◽  
Jin Chul Paeng ◽  
Gi Jeong Cheon ◽  
June-Key Chung ◽  
...  

Abstract Background: The principle of loss of iodine uptake and increased glucose metabolism according to dedifferentiation of thyroid cancer is clinically assessed by imaging. Though these biological properties are widely applied to appropriate iodine therapy, the understanding of the genomic background of this principle is still lacking. We investigated the association between glucose metabolism and differentiation in advanced thyroid cancer as well as papillary thyroid cancer (PTC). Methods: We used RNA sequencing of 505 patients with PTC obtained from the Cancer Genome Archives and microarray data of poorly-differentiated and anaplastic thyroid cancer (PDTC/ATC). The signatures of GLUT and glycolysis were estimated to assess glucose metabolic profiles. The glucose metabolic profiles were associated with tumor differentiation score (TDS) and BRAFV600E mutation status. In addition, survival analysis of glucose metabolic profiles was performed for predicting recurrence-free survival. Results: In PTC, the glycolysis signature was positively correlated with TDS, while the GLUT signature was inversely correlated with TDS. These correlations were significantly stronger in the BRAFV600E negative group than the positive group. Meanwhile, both GLUT and glycolysis signatures were negatively correlated with TDS in advanced thyroid cancer. The high glycolysis signature was significantly associated with poor prognosis in PTC in spite of high TDS. The glucose metabolic profiles are intricately associated with tumor differentiation in PTC and PDTC/ATC. Conclusions: As glycolysis was an independent prognostic marker, we suggest that the glucose metabolism features of thyroid cancer could be another biological progression marker different from differentiation and provide clinical implications for risk stratification.


2019 ◽  
Author(s):  
Hoon Young Suh ◽  
Hongyoon Choi ◽  
Jin Chul Paeng ◽  
Gi Jeong Cheon ◽  
June-Key Chung ◽  
...  

Abstract Background The principle of loss of iodine uptake and increased glucose metabolism according to dedifferentiation of thyroid cancer is clinically assessed by imaging. Though these biological properties are widely applied to appropriate iodine therapy, the understanding of the genomic background of this principle is still lacking. We investigated the association between glucose metabolism and differentiation in advanced thyroid cancer as well as papillary thyroid cancer (PTC). Methods We used RNA sequencing of PTC obtained from the Cancer Genome Archives and microarray data of poorly-differentiated and anaplastic thyroid cancer (PDTC/ATC). The signatures of GLUT and glycolysis were estimated to assess glucose metabolic profiles. The glucose metabolic profiles were associated with tumor differentiation score (TDS) and BRAFV600E mutation status. In addition, survival analysis of glucose metabolic profiles was performed for predicting recurrence-free survival. Results In PTC, the glycolysis signature was positively correlated with TDS, while the GLUT signature was inversely correlated with TDS. These correlations were significantly stronger in the BRAFV600E negative group than the positive group. Meanwhile, both GLUT and glycolysis signatures were negatively correlated with TDS in advanced thyroid cancer. The high glycolysis signature was significantly associated with poor prognosis in PTC in spite of high TDS. The glucose metabolic profiles are intricately associated with tumor differentiation in PTC and PDTC/ATC. Conclusions As glycolysis was an independent prognostic marker, we suggest that the glucose metabolism features of thyroid cancer could be another biological progression marker different from differentiation and provide clinical implications for risk stratification.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hoon Young Suh ◽  
Hongyoon Choi ◽  
Jin Chul Paeng ◽  
Gi Jeong Cheon ◽  
June-Key Chung ◽  
...  

Abstract Background The principle of loss of iodine uptake and increased glucose metabolism according to dedifferentiation of thyroid cancer is clinically assessed by imaging. Though these biological properties are widely applied to appropriate iodine therapy, the understanding of the genomic background of this principle is still lacking. We investigated the association between glucose metabolism and differentiation in advanced thyroid cancer as well as papillary thyroid cancer (PTC). Methods We used RNA sequencing of 505 patients with PTC obtained from the Cancer Genome Archives and microarray data of poorly-differentiated and anaplastic thyroid cancer (PDTC/ATC). The signatures of GLUT and glycolysis were estimated to assess glucose metabolic profiles. The glucose metabolic profiles were associated with tumor differentiation score (TDS) and BRAFV600E mutation status. In addition, survival analysis of glucose metabolic profiles was performed for predicting recurrence-free survival. Results In PTC, the glycolysis signature was positively correlated with TDS, while the GLUT signature was inversely correlated with TDS. These correlations were significantly stronger in the BRAFV600E negative group than the positive group. Meanwhile, both GLUT and glycolysis signatures were negatively correlated with TDS in advanced thyroid cancer. The high glycolysis signature was significantly associated with poor prognosis in PTC in spite of high TDS. The glucose metabolic profiles are intricately associated with tumor differentiation in PTC and PDTC/ATC. Conclusions As glycolysis was an independent prognostic marker, we suggest that the glucose metabolism features of thyroid cancer could be another biological progression marker different from differentiation and provide clinical implications for risk stratification. Trial registration Not applicable.


2019 ◽  
Author(s):  
Hoon Young Suh ◽  
Hongyoon Choi ◽  
Jin Chul Paeng ◽  
Gi Jeong Cheon ◽  
June-Key Chung ◽  
...  

Abstract Background: The principle of loss of iodine uptake and increased glucose metabolism according to dedifferentiation of thyroid cancer is clinically assessed by imaging. Though these biological properties are widely applied to appropriate iodine therapy, the understanding of the genomic background of this principle is still lacking. We investigated the association between glucose metabolism and differentiation in advanced thyroid cancer as well as papillary thyroid cancer (PTC). Methods: We used RNA sequencing of 505 patients with PTC obtained from the Cancer Genome Archives and microarray data of poorly-differentiated and anaplastic thyroid cancer (PDTC/ATC). The signatures of GLUT and glycolysis were estimated to assess glucose metabolic profiles. The glucose metabolic profiles were associated with tumor differentiation score (TDS) and BRAFV600E mutation status. In addition, survival analysis of glucose metabolic profiles was performed for predicting recurrence-free survival. Results: In PTC, the glycolysis signature was positively correlated with TDS, while the GLUT signature was inversely correlated with TDS. These correlations were significantly stronger in the BRAFV600E negative group than the positive group. Meanwhile, both GLUT and glycolysis signatures were negatively correlated with TDS in advanced thyroid cancer. The high glycolysis signature was significantly associated with poor prognosis in PTC in spite of high TDS. The glucose metabolic profiles are intricately associated with tumor differentiation in PTC and PDTC/ATC. Conclusions: As glycolysis was an independent prognostic marker, we suggest that the glucose metabolism features of thyroid cancer could be another biological progression marker different from differentiation and provide clinical implications for risk stratification.


2019 ◽  
Author(s):  
Hoon Young Suh ◽  
Hongyoon Choi ◽  
Jin Chul Paeng ◽  
Gi Jeong Cheon ◽  
June-Key Chung ◽  
...  

Abstract Background: The principle of loss of iodine uptake and increased glucose metabolism according to dedifferentiation of thyroid cancer is clinically assessed by imaging. Though these biological properties are widely applied to appropriate iodine therapy, the understanding of the genomic background of this principle is still lacking. We investigated the association between glucose metabolism and differentiation in advanced thyroid cancer as well as papillary thyroid cancer (PTC). Methods: We used RNA sequencing of PTC obtained from the Cancer Genome Archives and microarray data of poorly-differentiated and anaplastic thyroid cancer (PDTC/ATC). The signatures of GLUT and glycolysis were estimated to assess glucose metabolic profiles. The glucose metabolic profiles were associated with tumor differentiation score (TDS) and BRAFV600E mutation status. In addition, survival analysis of glucose metabolic profiles was performed for predicting recurrence-free survival. Results: In PTC, the glycolysis signature was positively correlated with TDS, while the GLUT signature was inversely correlated with TDS. These correlations were significantly stronger in the BRAFV600E negative group than the positive group. Meanwhile, both GLUT and glycolysis signatures were negatively correlated with TDS in advanced thyroid cancer. The high glycolysis signature was significantly associated with poor prognosis in PTC in spite of high TDS. The glucose metabolic profiles are intricately associated with tumor differentiation in PTC and PDTC/ATC. Conclusions: As glycolysis was an independent prognostic marker, we suggest that the glucose metabolism features of thyroid cancer could be another biological progression marker different from differentiation and provide clinical implications for risk stratification.


2019 ◽  
Author(s):  
Hoon Young Suh ◽  
Hongyoon Choi ◽  
Jin Chul Paeng ◽  
Gi Jeong Cheon ◽  
June-Key Chung ◽  
...  

Abstract Background: The principle of loss of iodine uptake and increased glucose metabolism according to dedifferentiation of thyroid cancer is clinically assessed by imaging. Though these biological properties are widely applied to appropriate iodine therapy, the understanding of the genomic background of this principle is still lacking. We investigated the association between glucose metabolism and differentiation in advanced thyroid cancer as well as papillary thyroid cancer (PTC). Methods: We used RNA sequencing of 505 patients with PTC obtained from the Cancer Genome Archives and microarray data of poorly-differentiated and anaplastic thyroid cancer (PDTC/ATC). The signatures of GLUT and glycolysis were estimated to assess glucose metabolic profiles. The glucose metabolic profiles were associated with tumor differentiation score (TDS) and BRAFV600E mutation status. In addition, survival analysis of glucose metabolic profiles was performed for predicting recurrence-free survival. Results: In PTC, the glycolysis signature was positively correlated with TDS, while the GLUT signature was inversely correlated with TDS. These correlations were significantly stronger in the BRAFV600E negative group than the positive group. Meanwhile, both GLUT and glycolysis signatures were negatively correlated with TDS in advanced thyroid cancer. The high glycolysis signature was significantly associated with poor prognosis in PTC in spite of high TDS. The glucose metabolic profiles are intricately associated with tumor differentiation in PTC and PDTC/ATC. Conclusions: As glycolysis was an independent prognostic marker, we suggest that the glucose metabolism features of thyroid cancer could be another biological progression marker different from differentiation and provide clinical implications for risk stratification.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3200
Author(s):  
Alessandro Prete ◽  
Antonio Matrone ◽  
Carla Gambale ◽  
Liborio Torregrossa ◽  
Elisa Minaldi ◽  
...  

PDTC and ATC present median overall survival of 6 years and 6 months, respectively. In spite of their rarity, patients with PDTC and ATC represent a significant clinical problem, because of their poor survival and the substantial inefficacy of classical therapies. We reviewed the newest findings about genetic features of PDTC and ATC, from mutations occurring in DNA to alterations in RNA. Therefore, we describe their tumor microenvironments (both immune and not-immune) and the interactions between tumor and neighboring cells. Finally, we recapitulate how this upcoming evidence are changing the treatment of PDTC and ATC.


2019 ◽  
Vol 40 (6) ◽  
pp. 1573-1604 ◽  
Author(s):  
Maria E Cabanillas ◽  
Mabel Ryder ◽  
Camilo Jimenez

Abstract The treatment of advanced thyroid cancer has undergone rapid evolution in the last decade, with multiple kinase inhibitor drug approvals for each subtype of thyroid cancer and a number of other commercially available drugs that have been studied for this indication. Although most of the US Food and Drug Administration (FDA)–approved drugs are antiangiogenic multikinase inhibitors—vandetanib, cabozantinib, sorafenib, lenvatinib—there are two FDA indications that are mutation specific—dabrafenib/trametinib for BRAF-mutated anaplastic thyroid cancer and larotrectinib for NTRK-fusion thyroid cancer. Furthermore, other mutation-specific drugs, immunotherapies, and novel strategies for advanced thyroid cancer are under investigation. Understanding the molecular basis of thyroid cancer, the drugs of interest for treatment of advanced thyroid cancer, and how these drugs can be administered safely and in the appropriate clinical scenario are the topics of this review.


2006 ◽  
Vol 13 (2) ◽  
pp. 119-128 ◽  
Author(s):  
Kepal N. Patel ◽  
Ashok R. Shaha

2021 ◽  
Vol 28 (1) ◽  
pp. 15-26
Author(s):  
Clotilde Sparano ◽  
Yann Godbert ◽  
Marie Attard ◽  
Christine Do Cao ◽  
Slimane Zerdoud ◽  
...  

Anaplastic thyroid cancer (ATC) is a rare lethal disease. Lenvatinib is an off-label therapeutic option for ATC in most countries, except in Japan. The aim of this multicenter retrospective survey was to analyze the efficacy and the toxicity profile of off-label lenvatinib treatment in all adults advanced ATC patients, in France. Of the 23 patients analysed (14 males; mean age 64 years), 15 were pure ATC and 8 were mixed tumors (i.e. with a differentiated or poorly differentiated component). Prior treatments included neck external beam irradiation in 74%, at least one line of chemotherapy in 22 cases, two lines of chemotherapy in 11 patients, other TKI in 4 cases. A central RECIST assessment was performed. Since lenvatinib initiation, median PFS was 2.7 months (95% CI; 1.9–3.5) and median OS was 3.1 months (95% CI; 0.6–5.5). OS was significantly longer in case of mixed tumors compared with pure ATC (6.3 vs 2.7 months, P = 0.026). Best tumor response was partial response in two cases and stable disease in seven. Clinical improvement was achieved in seven patients. Lethal adverse events occurred in three patients, consisting in haemoptysis in two cases and pneumothorax in one case. Among long-surviving ATC patients (>6 months), four underwent biopsy of distant metastasis, revealing poorly differentiated histology; three of them had initial mixed ATC histology. Efficacy of lenvatinib appears limited, although pure vs mixed ATC disclose differences in disease aggressiveness and treatment response. Long-surviving ATC patients might benefit from biopsy of persistent disease, searching for histological transition or molecular target.


Sign in / Sign up

Export Citation Format

Share Document