fda approved drugs
Recently Published Documents


TOTAL DOCUMENTS

628
(FIVE YEARS 436)

H-INDEX

32
(FIVE YEARS 14)

2022 ◽  
Vol 000 (000) ◽  
pp. 000-000
Author(s):  
Valentina L. Kouznetsova ◽  
Aidan Zhang ◽  
Mark A. Miller ◽  
Mahidhar Tatineni ◽  
Jerry P. Greenberg ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 665
Author(s):  
Muruganantham Bharathi ◽  
Bhagavathi Sundaram Sivamaruthi ◽  
Periyanaina Kesika ◽  
Subramanian Thangaleela ◽  
Chaiyavat Chaiyasut

In October 2020, the SARS-CoV-2 B.1.617 lineage was discovered in India. It has since become a prominent variant in several Indian regions and 156 countries, including the United States of America. The lineage B.1.617.2 is termed the delta variant, harboring diverse spike mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD), which may heighten its immune evasion potentiality and cause it to be more transmissible than other variants. As a result, it has sparked substantial scientific investigation into the development of effective vaccinations and anti-viral drugs. Several efforts have been made to examine ancient medicinal herbs known for their health benefits and immune-boosting action against SARS-CoV-2, including repurposing existing FDA-approved anti-viral drugs. No efficient anti-viral drugs are available against the SARS-CoV-2 Indian delta variant B.1.617.2. In this study, efforts were made to shed light on the potential of 603 phytocompounds from 22 plant species to inhibit the Indian delta variant B.1.617.2. We also compared these compounds with the standard drug ceftriaxone, which was already suggested as a beneficial drug in COVID-19 treatment; these compounds were compared with other FDA-approved drugs: remdesivir, chloroquine, hydroxy-chloroquine, lopinavir, and ritonavir. From the analysis, the identified phytocompounds acteoside (−7.3 kcal/mol) and verbascoside (−7.1 kcal/mol), from the plants Clerodendrum serratum and Houttuynia cordata, evidenced a strong inhibitory effect against the mutated NTD (MT-NTD). In addition, the phytocompounds kanzonol V (−6.8 kcal/mol), progeldanamycin (−6.4 kcal/mol), and rhodoxanthin (−7.5 kcal/mol), from the plant Houttuynia cordata, manifested significant prohibition against RBD. Nevertheless, the standard drug, ceftriaxone, signals less inhibitory effect against MT-NTD and RBD with binding affinities of −6.3 kcal/mol and −6.5 kcal/mol, respectively. In this study, we also emphasized the pharmacological properties of the plants, which contain the screened phytocompounds. Our research could be used as a lead for future drug design to develop anti-viral drugs, as well as for preening the Siddha formulation to control the Indian delta variant B.1.617.2 and other future SARS-CoV-2 variants.


Author(s):  
Igor José dos Santos Nascimento ◽  
Thiago Mendonça de Aquino ◽  
Edeildo Ferreira da Silva-Júnior

Background: Since the end of 2019, the etiologic agent SAR-CoV-2 responsible for one of the most significant epidemics in history has caused severe global economic, social, and health damages. The drug repurposing approach and application of Structure-based Drug Discovery (SBDD) using in silico techniques are increasingly frequent, leading to the identification of several molecules that may represent promising potential. Method: In this context, here we use in silico methods of virtual screening (VS), pharmacophore modeling (PM), and fragment-based drug design (FBDD), in addition to molecular dynamics (MD), molecular mechanics/Poisson-Boltzmann surface area (MM -PBSA) calculations, and covalent docking (CD) for the identification of potential treatments against SARS-CoV-2. We initially validated the docking protocol followed by VS in 1,613 FDA-approved drugs obtained from the ZINC database. Thus, we identified 15 top hits, of which three of them were selected for further simulations. In parallel, for the compounds with a fit score value ≤ of 30, we performed the FBDD protocol, where we designed 12 compounds Result: By applying a PM protocol in the ZINC database, we identified three promising drug candidates. Then, the 9 top hits were evaluated in simulations of MD, MM-PBSA, and CD. Subsequently, MD showed that all identified hits showed stability at the active site without significant changes in the protein's structural integrity, as evidenced by the RMSD, RMSF, Rg, SASA graphics. They also showed interactions with the catalytic dyad (His41 and Cys145) and other essential residues for activity (Glu166 and Gln189) and high affinity for MM-PBSA, with possible covalent inhibition mechanism. Conclution: Finally, our protocol helped identify potential compounds wherein ZINC896717 (Zafirlukast), ZINC1546066 (Erlotinib), and ZINC1554274 (Rilpivirine) were more promising and could be explored in vitro, in vivo, and clinical trials to prove their potential as antiviral agents.


2022 ◽  
Author(s):  
Cong Fan ◽  
Xin Wang ◽  
Tianze Wang ◽  
Huiying Zhao

Recent studies suggest RNAs playing essential roles in many cell activities and act as promising drug targets. However, limited development has been achieved in detecting RNA-ligand interactions. To guide the discovery of RNA-binding ligands, it is necessary to characterize them comprehensively. We established a database, RNALID that collects RNA-ligand interactions validated by low-throughput experiment. RNALID contains 358 RNA-ligand interactions. Comparing to other databases, 94.5% of ligands in RNALID are completely or partially novel collections, and 51.78% have novel two-dimensional (2D) structures. The ligand structure analysis indicated that multivalent ligands (MV), ligands binding with cellular mRNA (mRNA), ligands binding with RNA from virus (vRNA) and ligands binding with RNA containing repetitive sequence (rep RNA) are more structurally conserved in both 2D and 3D structures than other ligand types. Binding affinity analysis revealed that interactions between ligands and rep RNA were significantly stronger (two-tailed MW-U test P-value = 0.012) than the interactions between ligands and non-rep RNAs; the interactions between ligands and vRNA were significantly stronger (two-tailed MW-U test P-value = 0.012) than those between ligands and mRNA. Drug-likeness analysis indicated that small molecule (SM) ligands binding with non-rep RNA or vRNA may have higher probability to be drugs than other types of ligands. Comparing ligands in RNALID to FDA-approved drugs and ligands without bioactivity indicated that RNA-binding ligands are different from them in chemical properties, structural properties and drug-likeness. Thus, characterizing the RNA-ligand interactions in RNALID in multiple respects provides new insights into discovering and designing druggable ligands binding with RNA.


Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Khalid Mashay Alanazi ◽  
Mohammad Abul Farah ◽  
Yan-Yan Hor

The COVID-19 pandemic caused by SARS-CoV-2 is unprecedented in recent memory owing to the non-stop escalation in number of infections and deaths in almost every country of the world. The lack of treatment options further worsens the scenario, thereby necessitating the exploration of already existing US FDA-approved drugs for their effectiveness against COVID-19. In the present study, we have performed virtual screening of nutraceuticals available from DrugBank against 14 SARS-CoV-2 proteins. Molecular docking identified several inhibitors, two of which, rutin and NADH, displayed strong binding affinities and inhibitory potential against SARS-CoV-2 proteins. Further normal model-based simulations were performed to gain insights into the conformational transitions in proteins induced by the drugs. The computational analysis in the present study paves the way for experimental validation and development of multi-target guided inhibitors to fight COVID-19.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 87
Author(s):  
Aleksandra Sochacka-Ćwikła ◽  
Marcin Mączyński ◽  
Andrzej Regiec

Hematological malignancies, also referred to as blood cancers, are a group of diseases involving abnormal cell growth and persisting in the blood, lymph nodes, or bone marrow. The development of new targeted therapies including small molecule inhibitors, monoclonal antibodies, bispecific T cell engagers, antibody-drug conjugates, recombinant immunotoxins, and, finally, Chimeric Antigen Receptor T (CAR-T) cells has improved the clinical outcomes for blood cancers. In this review, we summarized 52 drugs that were divided into small molecule and macromolecule agents, approved by the Food and Drug Administration (FDA) in the period between 2011 and 2021 for the treatment of hematological malignancies. Forty of them have also been approved by the European Medicines Agency (EMA). We analyzed the FDA-approved drugs by investigating both their structures and mechanisms of action. It should be emphasized that the number of targeted drugs was significantly higher (46 drugs) than chemotherapy agents (6 drugs). We highlight recent advances in the design of drugs that are used to treat hematological malignancies, which make them more effective and less toxic.


2021 ◽  
Vol 15 (1) ◽  
pp. 8
Author(s):  
Luis Córdova-Bahena ◽  
Axel A. Sánchez-Álvarez ◽  
Angel J. Ruiz-Moreno ◽  
Marco A. Velasco-Velázquez

CK1ε is a key regulator of WNT/β-catenin and other pathways that are linked to tumor progression; thus, CK1ε is considered a target for the development of antineoplastic therapies. In this study, we performed a virtual screening to search for potential CK1ε inhibitors. First, we characterized the dynamic noncovalent interactions profiles for a set of reported CK1ε inhibitors to generate a pharmacophore model, which was used to identify new potential inhibitors among FDA-approved drugs. We found that etravirine and abacavir, two drugs that are approved for HIV infections, can be repurposed as CK1ε inhibitors. The interaction of these drugs with CK1ε was further examined by molecular docking and molecular dynamics. Etravirine and abacavir formed stable complexes with the target, emulating the binding behavior of known inhibitors. However, only etravirine showed high theoretical binding affinity to CK1ε. Our findings provide a new pharmacophore for targeting CK1ε and implicate etravirine as a CK1ε inhibitor and antineoplastic agent.


2021 ◽  
Author(s):  
Arashdeep Singh ◽  
Arati Rajeevan ◽  
Vishaka Gopalan ◽  
Piyush Agrawal ◽  
Chi-Ping Day ◽  
...  

Oncogenesis mimics key aspects of embryonic development. However, the underlying molecular determinants are not completely understood. Leveraging temporal transcriptomic data during development in multiple human organs, we demonstrate that the 'embryonic positive (EP)' alternative splicing events, specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. EP events are associated with key oncogenic processes and their reactivation predicts proliferation rates in cancer cell lines as well as patient survival. EP exons are significantly enriched for nitrosylation and transmembrane domains coordinately regulating splicing in multiple genes involved in intracellular transport and N-linked glycosylation respectively, known critical players in cancer. We infer critical splicing factors (CSF) potentially regulating these EP events and show that CSFs exhibit copy number amplifications in cancer and are upregulated specifically in malignant cells in the tumor microenvironment. Mutational inactivation of CSFs results in decreased EP splicing, further supporting their causal role. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of CSFs in brain and liver, which can be potentially targeted using FDA approved drugs. Our study provides the first comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest novel targets including splicing events, splicing factors, and transcription factors.


Author(s):  
Ralph M. Trüeb

AbstractPattern hair loss (PHL) is the most frequent cause of hair loss in men and women, accounting for 65% of consultations in a hair referral center. PHL is understood to represent a hereditary, age-dependent progressive thinning of the scalp hair, which follows distinct clinical patterns with notable differences depending on sex and age of onset. Clinical and investigative advances have helped us to understand some of the pathogenic steps, leading to PHL. Besides genetic factors and peculiarities of androgen metabolism, additional pathogenic factors that are suspected include microbiomata, oxidative stress, and microinflammation. While further suspects are likely to be exposed, individual diversity of causal agents, as well as of the sequence of events, or combined factors, must be kept in mind. A large number of therapeutic molecules claimed to be active and patented in this field, and their limited efficacy in offering a definitive cure of PHL confirm the complexity of PHL. The aim of therapy is to retard progression of hair thinning and increase hair coverage of the scalp. As yet, two FDA-approved drugs are available for this purpose, oral finasteride, and topical solution of minoxidil. Variations in posology and formulation allow for an enhancement of patient comfort and treatment efficacy. Antiandrogen treatments in women with normal androgen levels have questionable efficacy while having health risks.


Sign in / Sign up

Export Citation Format

Share Document