scholarly journals Addressing Missing Data in Randomized Clinical Trials: A Causal Inference Perspective

Author(s):  
Ilja Cornelisz ◽  
Pim Cuijpers ◽  
Tara Donker ◽  
Chris van Klaveren

Abstract Background The importance of randomization in clinical trials has long been acknowledged for avoiding selection bias. Yet, bias concerns re-emerge with selective attrition. This study takes a causal inference perspective in addressing distinct scenarios of missing outcome data (MCAR, MAR and MNAR). Methods This study adopts a causal inference perspective in providing an overview of empirical strategies to estimate the average treatment effect, improve precision of the estimator, and to test whether the underlying identifying assumptions hold. We propose to use Random Forest Lee Bounds (RFLB) to address selective attrition and to obtain more precise average treatment effect intervals. Results When assuming MCAR or MAR, the often untenable identifying assumptions with respect to causal inference can hardly be verified empirically. Instead, missing outcome data in clinical trials should be considered as potentially non-random unobserved events (i.e. MNAR). Using simulated attrition data, we show how average treatment effect intervals can be tightened considerably using RFLB, by exploiting both continuous and discrete attrition predictor variables. Conclusions Bounding approaches should be used to acknowledge selective attrition in randomized clinical trials in acknowledging the resulting uncertainty with respect to causal inference. As such, Random Forest Lee Bounds estimates are more informative than point estimates obtained assuming MCAR or MAR.

2017 ◽  
Vol 27 (12) ◽  
pp. 3770-3784
Author(s):  
Biao Zhang

In individually randomized controlled trials, in addition to the primary outcome, information is often available on a number of covariates prior to randomization. This information is frequently utilized to undertake adjustment for baseline characteristics in order to increase precision of the estimation of average treatment effects; such adjustment is usually performed via covariate adjustment in outcome regression models. Although the use of covariate adjustment is widely seen as desirable for making treatment effect estimates more precise and the corresponding hypothesis tests more powerful, there are considerable concerns that objective inference in randomized clinical trials can potentially be compromised. In this paper, we study an empirical likelihood approach to covariate adjustment and propose two unbiased estimating functions that automatically decouple evaluation of average treatment effects from regression modeling of covariate–outcome relationships. The resulting empirical likelihood estimator of the average treatment effect is as efficient as the existing efficient adjusted estimators1 when separate treatment-specific working regression models are correctly specified, yet are at least as efficient as the existing efficient adjusted estimators1 for any given treatment-specific working regression models whether or not they coincide with the true treatment-specific covariate–outcome relationships. We present a simulation study to compare the finite sample performance of various methods along with some results on analysis of a data set from an HIV clinical trial. The simulation results indicate that the proposed empirical likelihood approach is more efficient and powerful than its competitors when the working covariate–outcome relationships by treatment status are misspecified.


2021 ◽  
Author(s):  
Jean-Pierre R Falet ◽  
Joshua Durso-Finley ◽  
Brennan Nichyporuk ◽  
Julien Schroeter ◽  
Francesca Bovis ◽  
...  

Modeling treatment effect could identify a subgroup of individuals who experience greater benefit from disease modifying therapy, allowing for predictive enrichment to increase the power of future clinical trials. We use deep learning to estimate the conditional average treatment effect for individuals taking disease modifying therapies for multiple sclerosis, using their baseline clinical and imaging characteristics. Data were obtained as part of three placebo-controlled randomized clinical trials: ORATORIO, OLYMPUS and ARPEGGIO, investigating the efficacy of ocrelizumab, rituximab and laquinimod, respectively. A shuffled mix of participants having received ocrelizumab or rituximab, anti-CD20-antibodies, was separated into a training (70%) and testing (30%) dataset, but we also performed nested cross-validation to improve the generalization error estimate. Data from ARPEGGIO served as additional external validation. An ensemble of multitask multilayer perceptrons was trained to predict the rate of disability progression on both active treatment and placebo to estimate the conditional average treatment effect. The model was able to separate responders and non-responders across a range of predicted effect sizes. Notably, the average treatment effect for the anti-CD20-antibody test set during nested cross-validation was significantly greater when selecting the model's prediction for the top 50% (HR 0.625, p=0.008) or the top 25% (HR 0.521, p=0.013) most responsive individuals, compared to HR 0.835 (p=0.154) for the entire group. The model trained on the anti-CD20-antibody dataset could also identify responders to laquinimod, finding a significant treatment effect in the top 30% of individuals (HR 0.352, p=0.043). We observed enrichment across a broad range of baseline features in the responder subgroups: younger, more men, shorter disease duration, higher disability scores, and more lesional activity. By simulating a 1-year study where only the 50% predicted to be most responsive are randomized, we could achieve 80% power to detect a significant difference with 6 times less participants than a clinical trial without enrichment. Subgroups of individuals with primary progressive multiple sclerosis who respond favourably to disease modifying therapies can therefore be identified based on their baseline characteristics, even when no significant treatment effect can be found at the whole-group level. The approach allows for predictive enrichment of future clinical trials, as well as personalized treatment selection in the clinic.


Biometrics ◽  
2018 ◽  
Vol 74 (3) ◽  
pp. 910-923 ◽  
Author(s):  
Jianxuan Liu ◽  
Yanyuan Ma ◽  
Lan Wang

Author(s):  
Sean Wharton ◽  
Arne Astrup ◽  
Lars Endahl ◽  
Michael E. J. Lean ◽  
Altynai Satylganova ◽  
...  

AbstractIn the approval process for new weight management therapies, regulators typically require estimates of effect size. Usually, as with other drug evaluations, the placebo-adjusted treatment effect (i.e., the difference between weight losses with pharmacotherapy and placebo, when given as an adjunct to lifestyle intervention) is provided from data in randomized clinical trials (RCTs). At first glance, this may seem appropriate and straightforward. However, weight loss is not a simple direct drug effect, but is also mediated by other factors such as changes in diet and physical activity. Interpreting observed differences between treatment arms in weight management RCTs can be challenging; intercurrent events that occur after treatment initiation may affect the interpretation of results at the end of treatment. Utilizing estimands helps to address these uncertainties and improve transparency in clinical trial reporting by better matching the treatment-effect estimates to the scientific and/or clinical questions of interest. Estimands aim to provide an indication of trial outcomes that might be expected in the same patients under different conditions. This article reviews how intercurrent events during weight management trials can influence placebo-adjusted treatment effects, depending on how they are accounted for and how missing data are handled. The most appropriate method for statistical analysis is also discussed, including assessment of the last observation carried forward approach, and more recent methods, such as multiple imputation and mixed models for repeated measures. The use of each of these approaches, and that of estimands, is discussed in the context of the SCALE phase 3a and 3b RCTs evaluating the effect of liraglutide 3.0 mg for the treatment of obesity.


2019 ◽  
Vol 30 (3) ◽  
pp. 695-712
Author(s):  
Gabriel González ◽  
Luisa Díez-Echavarría ◽  
Elkin Zapa ◽  
Danilo Eusse

Las instituciones de educación superior deben formar a sus estudiantes según requerimientos del contexto en que se desenvuelven, ya que, sobre la base de su desempeño, es donde se medirá si las políticas de desarrollo socioeconómico son efectivas. Para lograrlo, es necesario identificar el impacto de esa educación en sus egresados, y hacer los ajustes necesarios que generen mejora continua. El objetivo de este artículo es estimar el impacto académico y social de egresados del Instituto Tecnológico Metropolitano – Medellín, a través de un análisis multivariado y la estimación del modelo Average Treatment Effect (ATE). Se encontró que la educación ofrecida a esta población ha generado un impacto académico, asociado a los estudios de actualización, y dos impactos sociales, asociados a la situación laboral y al nivel de ingresos percibidos por los egresados. Se recomienda usar esta metodología en otras instituciones, ya que suele arrojar resultados más informativos y precisos que los estudios tradicionales de caracterización, y se puede medir el efecto de cualquier estrategia.


Sign in / Sign up

Export Citation Format

Share Document