scholarly journals Understanding the structure and function of microbial community in acid mine drainage system of Malanjkhand Copper Project, India

2020 ◽  
Author(s):  
Abhishek Gupta ◽  
Avishek Dutta ◽  
Jayeeta Sarkar ◽  
Mruganka Kumar Panigrahi ◽  
Pinaki Sar

Abstract The authors have withdrawn this preprint from Research Square

2012 ◽  
Vol 43 (3) ◽  
pp. 262-274 ◽  
Author(s):  
J. Borrego ◽  
B. Carro ◽  
N. López-González ◽  
J. de la Rosa ◽  
J. A. Grande ◽  
...  

The concentration of rare earth elements together with Sc, Y, and U, as well as rare earth elements fractionation patterns, in the water of an affected acid mine drainage system were investigated. Significant dissolved concentrations of the studied elements were observed in the fluvial sector of this estuary system (Sc ∼ 31 μg L−1, Y ∼ 187 μg L−1, U ∼ 41 μg L−1, Σ rare earth elements ∼621 μg L−1), with pH values below 2.7. In the mixing zone of the estuary, concentrations are lower (Sc ∼ 2.1 μg L−1; Y ∼ 16.7 μg L−1; U ∼ 4.8 μg L−1; Σ rare earth elements ∼65.3 μg L−1) and show a strong longitudinal gradient. The largest rare earth elements removal occurs in the medium-chlorinity zone and it becomes extreme for heavy rare earth elements, as observed for Sc. Samples of the mixing zone show a North American Shale normalized pattern similar to the fluvial zone water, while the samples located in the zone with pH between 6.5 and 7.7 show a depletion of light rare earth elements relative to middle rare earth elements and heavy rare earth elements, similar to that observed in samples of the marine estuary.


2018 ◽  
Vol 247 ◽  
pp. 624-632 ◽  
Author(s):  
Yaneth Vasquez ◽  
Maria C. Escobar ◽  
Johan S. Saenz ◽  
Maria F. Quiceno-Vallejo ◽  
Carmen M. Neculita ◽  
...  

2002 ◽  
Vol 198 (1) ◽  
pp. 267-274 ◽  
Author(s):  
Marc Leblanc ◽  
Corinne Casiot ◽  
Françoise Elbaz-Poulichet ◽  
Christian Personné

2020 ◽  
Author(s):  
Sarah Zecchin ◽  
Nicoletta Guerrieri ◽  
Evelien Jongepier ◽  
Leonardo Scaglioni ◽  
Gigliola Borgonovo ◽  
...  

<p>Arsenic is a toxic but naturally abundant metalloid that globally leads to contamination in groundwater and soil, exposing millions of people to cancer and other arsenic-related diseases. In several areas in Northern Italy arsenic in soil and water exceeds law limits (20 mg kg<sup>-1</sup> and 10 mg L<sup>-1</sup>, respectively), due to both the mineralogy of bedrock and former mining activities. The Rio Rosso stream, located in the Anzasca Valley (Piedmont) is heavily affected by an acid mine drainage originated from an abandoned gold mine. Arsenic, together with other heavy metals, is transferred by the stream to the surrounding area. The stream is characterized by the presence of an extensive reddish epilithic biofilm at the opening of the mine and on the whole contaminated waterbed.</p> <p>The aim of this study was to characterize the mechanisms allowing the biotic fraction of this biofilm to cope with extreme arsenic concentrations. The composition and functionality of the microbial communities constituting the epilithic biofilms sampled in the close proximity and downstream the mine were unraveled by 16S rRNA genes and shotgun Illumina sequencing in relation to the extreme physico-chemical parameters. In parallel, autotrophic and heterotrophic microbial populations were characterized <em>in vivo</em> by enrichment cultivation and isolated strains were tested for their ability to perform arsenic redox transformation.</p> <p>Preliminary analyses indicated that the biofilm accumulated arsenic in the order of 6 · 10<sup>3</sup> mg kg<sup>-1</sup>, in contrast to 0.14 mg L<sup>-1</sup>, measured in the surrounding water. The main chemical parameter affecting the composition of the microbial community was the pH, being 2 next to the mine and 6.7 in the downstream sampling point. In both sampling sites iron- and sulfur-cycling microorganisms were retrieved by both cultivation and molecular methods. However, the diversity of the microbial community living next to the mine was significantly lower with respect to the community developed downstream. In the latter, autotrophic <em>Cyanobacteria</em> belonging to the species <em>Tychonema</em> were the dominant taxa. A complete arsenic cycle was shown to occur, with heterotrophic bacteria mainly responsible for arsenate reduction and autotrophic bacteria performing arsenite  oxidation.</p> <p>These observations indicate that the epilithic biofilm living in the Rio Rosso stream represents a peculiar ecosystem where microorganisms cope with metalloid toxicity likely using diverse mechanisms. Such microbial metabolic properties might be exploited in bioremediation strategies applied in arsenic-contaminated environments.</p>


Sign in / Sign up

Export Citation Format

Share Document