Hadoop-CNV-RF: a clinically validated and scalable copy number variation detection tool for next-generation sequencing data

2020 ◽  
Author(s):  
Getiria Onsongo ◽  
Ham Ching Lam ◽  
Matthew Bower ◽  
Bharat Thyagarajan

Abstract Objective : Detection of small copy number variations (CNVs) in clinically relevant genes is routinely being used to aid diagnosis. We recently developed a tool, CNV-RF , capable of detecting small clinically relevant CNVs. CNV-RF was designed for small gene panels and did not scale well to large gene panels. On large gene panels, CNV-RF routinely failed due to memory limitations. When successful, it took about 2 days to complete a single analysis, making it impractical for routinely analyzing large gene panels. We need a reliable tool capable of detecting CNVs in the clinic that scales well to large gene panels. Results : We have developed Hadoop-CNV-RF, a scalable implementation of CNV-RF . Hadoop-CNV-RF is a freely available tool capable of rapidly analyzing large gene panels. It takes advantage of Hadoop, a big data framework developed to analyze large amounts of data. Preliminary results show it reduces analysis time from about 2 days to less than 4 hours and can seamlessly scale to large gene panels. Hadoop-CNV-RF has been clinically validated for targeted capture data and is currently being used in a CLIA molecular diagnostics laboratory. Its availability and usage instructions are publicly available at: https://github.com/getiria-onsongo/hadoop-cnvrf-public .

2012 ◽  
Vol 40 (9) ◽  
pp. e69-e69 ◽  
Author(s):  
Günter Klambauer ◽  
Karin Schwarzbauer ◽  
Andreas Mayr ◽  
Djork-Arné Clevert ◽  
Andreas Mitterecker ◽  
...  

2017 ◽  
Author(s):  
Yuchao Jiang ◽  
Rujin Wang ◽  
Eugene Urrutia ◽  
Ioannis N. Anastopoulos ◽  
Katherine L. Nathanson ◽  
...  

AbstractHigh-throughput DNA sequencing enables detection of copy number variations (CNVs) on the genome-wide scale with finer resolution compared to array-based methods, but suffers from biases and artifacts that lead to false discoveries and low sensitivity. We describe CODEX2, a statistical framework for full-spectrum CNV profiling that is sensitive for variants with both common and rare population frequencies and that is applicable to study designs with and without negative control samples. We demonstrate and evaluate CODEX2 on whole-exome and targeted sequencing data, where biases are the most prominent. CODEX2 outperforms existing methods and, in particular, significantly improves sensitivity for common CNVs.


2018 ◽  
Author(s):  
Bas Tolhuis ◽  
Hans Karten

AbstractDNA Copy Number Variations (CNVs) are an important source for genetic diversity and pathogenic variants. Next Generation Sequencing (NGS) methods have become increasingly more popular for CNV detection, but its data analysis is a growing bottleneck. Genalice CNV is a novel tool for detection of CNVs. It takes care of turnaround time, scalability and cost issues associated with NGS computational analysis. Here, we validate Genalice CNV with MLPA-verified exon CNVs and genes with normal copy numbers. Genalice CNV detects 61 out of 62 exon CNVs and its false positive rate is less than 1%. It analyzes 96 samples from a targeted NGS assay in less than 45 minutes, including read alignment and CNV detection, using a single node. Furthermore, we describe data quality measures to minimize false discoveries. In conclusion, Genalice CNV is highly sensitive and specific, as well as extremely fast, which will be beneficial for clinical detection of CNVs.


Sign in / Sign up

Export Citation Format

Share Document