scholarly journals The evaluation of the distance between the popliteus tendon and the lateral collateral ligament footprint and the implant in Total Knee Arthroplasty using a 3-dimensional template.

2020 ◽  
Author(s):  
Akihito Takubo ◽  
Keinosuke Ryu ◽  
Takanori Iriuchishima ◽  
Masahiro Nagaoka ◽  
Yasuaki Tokuhashi ◽  
...  

Abstract Background When surgeons perform TKA, popliteus tendon (PT) and lateral collateral ligament (LCL) iatrogenic injuries are a risk because the femoral attachments are relatively close to the bone resection area. The purpose of this study was to evaluate the distance between the PT or LCL footprint and the TKA implant using a 3D template system and to evaluate any significant differences according to the implant model. Methods Eighteen non-paired formalin fixed cadaveric lower limbs were used. All the surrounding soft tissue except the PT, ligaments and meniscus were removed from the knee. Careful dissection of the PT and LCL was performed, and the femoral footprints were detected. Each footprint periphery was marked with a K-wire. CT scanning was then performed. The data was analyzed with a 3D template system. This simulation models for TKA were the Journey II BCS and the Persona PS. The area of each footprint, and the length between the most distal and posterior point of the lateral femoral condyle and the edge of each footprint were measured. Matching the implant model to the CT image, the shortest length between each footprint and the osteotomy area were calculated. Results The area of the PT and LCL footprints was 38.7±17.7mm 2 and 58.0±24.6mm 2 . The length between the most distal and posterior point of the lateral femoral condyle and the edge of the PT footprint was 10.3±2.4mm and 14.2±2.8mm. The length between these same points and the edge of the LCL footprint was 16.3±2.3mm and 15.5±3.3mm. Under TKA simulation, for the Journey II BCS and the Persona PS, the shortest length between the PT footprint and the osteotomy area was 4.3±2.5mm and 3.2±2.9mm, and the shortest length between the LCL footprint and the osteotomy area was 7.2±2.3mm and 5.6±2.1mm. The PT attachment was damaged by the bone resection of the Journey II BCS and the Persona PS TKA in 3 and 9 knee. Conclusion The PT and LCL femoral attachments existed close to the femoral bone resection area of the TKA. Careful attention is needed to avoid damage to the PT and LCL during surgical procedures.

2020 ◽  
Author(s):  
Akihito Takubo ◽  
Keinosuke Ryu ◽  
Takanori Iriuchishima ◽  
Masahiro Nagaoka ◽  
Yasuaki Tokuhashi ◽  
...  

Abstract Background The popliteus tendon (PT) or lateral collateral ligament (LCL) stabilizes the postero-lateral aspects of the knees. When surgeons perform total knee arthroplasty (TKA), PT and LCL iatrogenic injuries are a risk because the femoral attachments are relatively close to the femoral bone resection area. The purpose of this study was to evaluate the distance between the PT or LCL footprint and the TKA implant using a 3D template system and to evaluate any significant differences according to the implant model.Methods Eighteen non-paired formalin fixed cadaveric lower limbs were used (average age: 80.3). Whole length lower limbs were resected from the pelvis. All the surrounding soft tissue except the PT, knee ligaments and meniscus were removed from the limb. Careful dissection of the PT and LCL was performed, and the femoral footprints were detected. Each footprint periphery was marked with a 1.5 mm K-wire. Computed tomography (CT) scanning of the whole lower limb was then performed. The CT data was analyzed with a 3D template system. This simulation models for TKA were the Journey II BCS and the Persona PS. The area of each footprint, and the length between the most distal and posterior point of the lateral femoral condyle and the edge of each footprint were measured. Matching the implant model to the CT image of the femur, the shortest length between each footprint and the bone resection area were calculated.Results PT and LCL footprint were detected in all knees. The area of the PT and LCL footprints was 38.7±17.7mm2 and 58.0±24.6mm2, respectively. The length between the most distal and posterior point of the lateral femoral condyle and the edge of the PT footprint was 10.3±2.4mm and 14.2±2.8mm, respectively. The length between most distal and most posterior point of the lateral femoral condyle and the edge of the LCL footprint was 16.3±2.3mm and 15.5±3.3mm, respectively. Under TKA simulation, the shortest length between the PT footprint and the femoral bone resection area for the Journey II BCS and the Persona PS was 4.3±2.5mm and 3.2±2.9mm, respectively. The shortest length between the LCL footprint and the femoral bone resection area for the Journey II BCS and the Persona PS was 7.2±2.3mm and 5.6±2.1mm, respectively. The PT attachment was damaged by the bone resection of the Journey II BCS and the Persona PS TKA in 3 and 9 knees, respectively.Conclusion The PT and LCL femoral attachments existed close to the femoral bone resection area of the TKA. To prevent postero-lateral instability in TKA, careful attention is needed to avoid damage to the PT and LCL during surgical procedures.


2020 ◽  
Author(s):  
Akihito Takubo ◽  
Keinosuke Ryu ◽  
Takanori Iriuchishima ◽  
Masahiro Nagaoka ◽  
Yasuaki Tokuhashi ◽  
...  

Abstract Background When the surgeons perform total knee arthroplasty (TKA), PT and LCL iatrogenic injury are worried because those femoral footprints are relatively close to the bone resection lesion. The purpose of this study was to evaluate the distance between PT or LCL footprint and TKA implant using the three-dimensional (3D) template system.Methods Eighteen non-paired formalin fixed cadaveric lower limbs were used. All the surrounded soft tissue except the PT and knee ligaments were removed from the limb. Careful dissection of the PT and LCL was performed, and those femoral footprints were detected. Each footprint was periphery marked with a K-wire. CT scanning of the whole lower limb was then performed. The CT data was analyzed with 3D template system. Simulated models of TKA were Journey II BCS and Persona PS. The area of each footprint, and the length between most distal or posterior point of femur and the edge of each footprint were measured. When the implant model was matched to the CT image, the shortest length between each footprint and the bone resection were evaluated.Results The area of PT and LCL footprint were, 38.7±17.7mm 2 , and 58±24.6mm 2 , respectively. The length between most distal or posterior point of femur and the edge of the PT footprint were 10.3±2.4mm, and 14.2±2.8mm, respectively. The length between most distal or posterior point of femur and the edge of the LCL footprint were 16.3±2.3mm, and 15.5±3.3mm, respectively. When simulated the TKA, the shortest length between PT footprint and bone resection lesion of Journey II BCS and Persona PS were, 4.3±2.5mm, and 3.2±2.9mm, respectively. The shortest length between PT footprint and bone resection lesion of Journey II BCS and Persona PS were, 7.2±2.3mm, and 5.6±2.1mm, respectively. PT footprint was suffered by the bone resection of Journey II BCS TKA in 3 knees, and also by the Persona PS’s bone resection in 9 knees.Conclusion The PT and LCL femoral footprint existed close to the femoral bone resection lesion of the TKA. Careful attention is needed not to injure the PT and LCL in the surgical procedures.


2021 ◽  
Vol 29 (5) ◽  
pp. 249-252
Author(s):  
MARCEL FARACO SOBRADO ◽  
CAMILO PARTEZANI HELITO ◽  
LUCAS DA PONTE MELO ◽  
ANDRE MARANGONI ASPERTI ◽  
RICCARDO GOMES GOBBI ◽  
...  

ABSTRACT Objective: To analyse the distances between the femoral insertions of the popliteus tendon (PT) and the lateral collateral ligament (LCL) through dissections of cadaveric specimens in a mixed population. Methods: Fresh cadavers were dissected, and the anthropometric data of all specimens were recorded. The distances from the origin of the PT to the LCL in the femoral region and the diameter of each structure were measured using a digital calliper. Results: In total, 11 unpaired knees were dissected, eight men and three women, with an average age of 71.5 ± 15.2 years, weight of 57.2 ± 15.6 kg, and a mean height of 170.5 ± 8.2 cm. The distance from the center of the femoral footprint of the LCL to the PT was 10.0 ± 2.4 mm. The distances between the edges closest to each other and those more distant from each other were 3.1 ± 1.1 mm and 16.3 ± 2.4 mm, respectively. Conclusion: The distance between the midpoints of the PT and the LCL in our mixed population is smaller than the distances often reported in the literature. PLC reconstruction with separate tunnels for the LCL and PT may not be technically possible for individuals of any population. Level of Evidence III, Diagnostic studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Liang Yuan ◽  
Bin Yang ◽  
Xiaohua Wang ◽  
Bin Sun ◽  
Ke Zhang ◽  
...  

Purpose. Bony resection is the primary step during total knee arthroplasty. The accuracy of bony resection was highly addressed because it was deemed to have a good relationship with mechanical line. Patient-specific instruments (PSI) were invented to copy the bony resection references from the preoperative surgical plan during a total knee arthroplasty (TKA); however, the accuracy still remains controversial. This study was aimed at finding out the accuracy of the bony resection during PSI-assisted TKA. Methods. Forty-two PSI-assisted TKAs (based on full-length leg CT images) were analyzed retrospectively. Resected bones of every patient were given a CT scan, and three-dimensional radiographs were reconstructed. The thickness of each bony resection was measured with the three-dimensional radiographs and recorded. The saw blade thickness (1.27 mm) was added to the measurements, and the results represented intraoperative bone resection thickness. A comparison between intraoperative bone resection thickness and preoperatively planned thickness was conducted. The differences were calculated, and the outliers were defined as >3 mm. Results. The distal femoral condyle had the most accurate bone cuts with the smallest difference (median, 1.0 mm at the distal medial femoral condyle and 0.8 mm at the distal lateral femoral condyle) and the least outliers (none at the distal medial femoral condyle and 1 (2.4%) at the distal lateral femoral condyle). The tibial plateau came in second (median difference, 0.8 mm at the medial tibial plateau and 1.4 mm at the lateral tibial plateau; outliers, none at the medial tibial plateau and 1 (2.6%) at the lateral tibial plateau). Regardless of whether the threshold was set to >2 mm (14 (17.9%) at the tibial plateau vs. 12 (14.6%) at the distal femoral condyle, p > 0.05 ) or >3 mm (1 (1.3%) at the tibial plateau vs. 1 (1.2%) at the distal femoral condyle, p > 0.05 ), the accuracy of tibial plateau osteotomy was similar to that of the distal femoral condyle. Osteotomy accuracy at the posterior femoral condyle and the anterior femoral condyle were the worst. Outliers were up to 6 (15.0%) at the posterior medial femoral condyle, 5 (12.2%) at the posterior lateral femoral condyle, and 6 (15.8%) at the anterior femoral condyle. The percentages of overcut and undercut tended to 50% in most parts except the lateral tibial plateau. At the lateral tibial plateau, the undercut percentage was twice that of the overcut. Conclusion. The tibial plateau and the distal femoral condyle share a similar accuracy of osteotomy with PSI. PSI have a generally good accuracy during the femur and tibia bone resection in TKA. PSI could be a kind of user-friendly tool which can simplify TKA with good accuracy. Level of Evidence. This is a Level IV case series with no comparison group.


2015 ◽  
Vol 40 (4) ◽  
pp. 821-825 ◽  
Author(s):  
Camilo Partezani Helito ◽  
Marcelo Batista Bonadio ◽  
Riccardo Gomes Gobbi ◽  
Roberto Freire da Mota e Albuquerque ◽  
José Ricardo Pécora ◽  
...  

2017 ◽  
Vol 5 (4_suppl4) ◽  
pp. 2325967117S0013
Author(s):  
Tobias Drenck ◽  
Christoph Domnick ◽  
Mirco Herbort ◽  
Michael Raschke ◽  
Karl-Heinz Frosch

Aims and Objectives: The posterolateral corner of the knee consists of different structures, which contribute to instability when damaged after injury or within surgery. Knowing the kinematic influences may help to improve clinical diagnostics and surgical techniques. The purpose was to determine static stabilizing effects of the posterolateral corner by dissecting stepwise all fibers and ligaments (the arcuat complex, AC) connected with the popliteus tendon (PLT) and the influence on lateral stability in the lateral collateral ligament (LCL) intact-state. Materials ans Methods: Kinematics were examined in 13 fresh-frozen human cadaveric knees using a robotic/UFS testing system with an optical tracking system. The knee kinematics were determined for 134 N anterior/posterior loads, 10 Nm valgus/varus loads and 5 Nm internal/external rotational loads in 0°, 20°, 30°, 60° and 90° of knee flexion. The posterolateral corner structures were consecutively dissected: The I.) intact knee joint, II.) with dissected posterior cruciate ligament, III.) meniscofibular/-tibial fibers, IV.) popliteofibular ligament, V.) popliteotibial fascicle (last structure of static AC), VI.) PLT and VII.) LCL. Results: The external rotation angle increased significantly by 2.6° to 7.9° (P<.05) in 0° to 90° of knee flexion and posterior tibial translation increased by 2.9 mm to 5.9 mm in 20° to 90° of knee flexion (P<.05) after cutting the AC/PLT structures (with intact LCL) in contrast to the PCL deficient knee. Differences between dissected static AC and dissected PLT were only found in 60° and 90° external rotation tests (by 2.1° and 3.1°; P<.05). In the other 28 kinematic tests, no significant differences between PLT and AC were found. Cutting the AC/PLT complex did not further decrease varus, valgus or anterior tibial stability in any flexion angle in comparison to the PCL dissected state. Conclusion: The arcuat complex is an important static stabilizer for external rotatory and posterior tibial loads of the knee, even in the lateral collateral ligament intact-state. After dissecting the major parts of the arcuat complex, the static stabilizing function of the popliteus tendon is lost. The arcuat complex has no varus-stabilizing function in the LCL-intact knee. The anatomy and function of these structures for external-rotational and posterior-translational stabilization should be considered for clinical diagnostics and when performing surgery in the posterolateral corner.


Sign in / Sign up

Export Citation Format

Share Document