scholarly journals Infection of highly insecticide-resistant malaria vector Anopheles coluzzii with entomopathogenic bacteria Chromobacterium violaceum reduces its survival, blood feeding propensity and fecundity

2020 ◽  
Author(s):  
Edounou Jacques Gnambani ◽  
Etienne Bilgo ◽  
Adama Sanou ◽  
Roch K. Dabire ◽  
Abdoulaye Diabate

Abstract Background This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective. Here, we studied the impact of Chromobacterium violaceum infections isolated from both larvae and adult of wild caught Anopheles gambiae s.l. mosquitoes in Burkina Faso on mosquito survival, blood feeding and fecundity propensy. Methods To assess entomopathogenic effects of C. violaceum infection on mosquitoes, three different types of bioassays were performed in laboratory. These bioassays aimed to evaluate the impact of C.violaceum infection on mosquito survival, blood feeding and fecundity, respectively. During bioassays mosquitoes were infected through the well-established system of cotton ball soaked with 6% glucose containing C.violaceum . Results C. violaceum kills pyrethroid resistant mosquitoes An. coluzzii (LT80 of 8.78 days ± 0.18 at 10 8 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~59%, P<0.001) the mosquito feeding willingness from day 4-post infection (~81% would seek a host to blood feed) to 9- day post infection (22 ± 4.62% would seek a host to blood feed). Moreover, C. violaceum considerably jeopardized the egg laying (~16 eggs laid /mosquitoes with C. violaceum infected mosquitoes vs ~129 eggs laid / mosquitoes with control mosquitoes) and hatching of mosquitoes (A reduction of ~22 % of hatching rate with C. violaceum infected mosquitoes). Compared to the bacterial uninfected mosquitoes, mosquitoes infected with C. violaceum showed indeed significantly higher retention rates of immature eggs and follicles. Conclusion These data showed important properties of Burkina Faso C. violaceum strains , which are highly virulent against insecticide resistant Anopheles coluzzii , and reduce both mosquito blood feeding and fecundity propensities. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will certainly provide useful information render it a potential candidate for the biological control strategies of malaria and other disease vectors.

2020 ◽  
Author(s):  
Edounou Jacques Gnambani ◽  
Etienne Bilgo ◽  
Adama Sanou ◽  
Roch K. Dabire ◽  
Abdoulaye Diabate

Abstract Background This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective. Here, we studied the impact of Chromobacterium violaceum infections isolated from both larvae and adult of wild caught Anopheles gambiae s.l. mosquitoes in Burkina Faso on mosquito survival, blood feeding and fecundity propensy. Methods To assess entomopathogenic effects of C. violaceum infection on mosquitoes, three different types of bioassays were performed in laboratory. These bioassays aimed to evaluate the impact of C.violaceum infection on mosquito survival, blood feeding and fecundity, respectively. During bioassays mosquitoes were infected through the well-established system of cotton ball soaked with 6% glucose containing C.violaceum.Results C. violaceum kills pyrethroid resistant mosquitoes An. coluzzii (LT80 of 8.78 days ± 0.18 at 108 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~59%, P<0.001) the mosquito feeding willingness from day 4-post infection (~81% would seek a host to blood feed) to 9- day post infection (22 ± 4.62% would seek a host to blood feed). Moreover, C. violaceum considerably jeopardized the egg laying (~16 eggs laid /mosquitoes with C. violaceum infected mosquitoes vs ~129 eggs laid / mosquitoes with control mosquitoes) and hatching of mosquitoes (A reduction of ~22 % of hatching rate with C. violaceum infected mosquitoes). Compared to the bacterial uninfected mosquitoes, mosquitoes infected with C. violaceum showed indeed significantly higher retention rates of immature eggs and follicles. Conclusion These data showed important properties of Burkina Faso C. violaceum strains, which are highly virulent against insecticide resistant Anopheles coluzzii, and reduce both mosquito blood feeding and fecundity propensities. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will certainly provide useful information render it a potential candidate for the biological control strategies of malaria and other disease vectors.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Edounou Jacques Gnambani ◽  
Etienne Bilgo ◽  
Adama Sanou ◽  
Roch K. Dabiré ◽  
Abdoulaye Diabaté

Abstract Background This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective. Here, the impact of Chromobacterium violaceum infections, isolated from both larvae and adult of wild-caught Anopheles gambiae sensu lato mosquitoes in Burkina Faso, was evaluated on mosquito survival, blood feeding and fecundity. Methods To assess entomopathogenic effects of C. violaceum infection on mosquitoes, three different types of bioassays were performed in laboratory. These bioassays aimed to evaluate the impact of C. violaceum infection on mosquito survival, blood feeding and fecundity, respectively. During bioassays mosquitoes were infected through the well-established system of cotton ball soaked with 6% glucose containing C. violaceum. Results Chromobacterium violaceum kills pyrethroid resistant Anopheles coluzzii (LT80 of 8.78 days ± 0.18 at 108 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~ 59%, P < 0.001) the mosquito feeding willingness from day 4-post infection (~ 81% would seek a host to blood feed) to 9- day post infection (22 ± 4.62% would seek a host to blood feed). Moreover, C. violaceum considerably jeopardized the egg laying (~ 16 eggs laid/mosquito with C. violaceum infected mosquitoes vs ~ 129 eggs laid/mosquito with control mosquitoes) and hatching of mosquitoes (a reduction of ~ 22% of hatching rate with C. violaceum infected mosquitoes). Compared to the bacterial uninfected mosquitoes, mosquitoes infected with C. violaceum showed significantly higher retention rates of immature eggs and follicles. Conclusion These data showed important properties of Burkina Faso C. violaceum strains, which are highly virulent against insecticide-resistant An. coluzzii, and reduce both mosquito blood feeding and fecundity propensities. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will provide useful information render it a potential candidate for the biological control strategies of malaria and other disease vectors.


2020 ◽  
Author(s):  
Edounou Jacques Gnambani ◽  
Etienne Bilgo ◽  
Adama Sanou ◽  
Roch K. Dabire ◽  
Abdoulaye Diabate

Abstract Background This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective. Here, the impact of Chromobacterium violaceum infections, isolated from both larvae and adult of wild-caught Anopheles gambiae sensu lato mosquitoes in Burkina Faso, was evaluated on mosquito survival, blood feeding and fecundity.Methods To assess entomopathogenic effects of C. violaceum infection on mosquitoes, three different types of bioassays were performed in laboratory. These bioassays aimed to evaluate the impact of C. violaceum infection on mosquito survival, blood feeding and fecundity, respectively. During bioassays mosquitoes were infected through the well-established system of cotton ball soaked with 6% glucose containing C. violaceum.Results Chromobacterium violaceum kills pyrethroid resistant Anopheles coluzzii (LT80 of 8.78 days ± 0.18 at 108 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~59%, P<0.001) the mosquito feeding willingness from day 4-post infection (~81% would seek a host to blood feed) to 9- day post infection (22 ± 4.62% would seek a host to blood feed). Moreover, C. violaceum considerably jeopardized the egg laying (~16 eggs laid/mosquito with C. violaceum infected mosquitoes vs ~129 eggs laid/mosquito with control mosquitoes) and hatching of mosquitoes (a reduction of ~22 % of hatching rate with C. violaceum infected mosquitoes). Compared to the bacterial uninfected mosquitoes, mosquitoes infected with C. violaceum showed significantly higher retention rates of immature eggs and follicles. Conclusion These data showed important properties of Burkina Faso C. violaceum strains, which are highly virulent against insecticide-resistant An. coluzzii, and reduce both mosquito blood feeding and fecundity propensities. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will provide useful information render it a potential candidate for the biological control strategies of malaria and other disease vectors.


2020 ◽  
Author(s):  
Edounou Jacques Gnambani ◽  
Etienne Bilgo ◽  
Adama Sanou ◽  
Roch K. Dabire ◽  
Abdoulaye Diabate

Abstract Background This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective. Here, we studied the impact of Chromobacterium violaceum infections isolated from both larvae and adult of wild caught Anopheles gambiae s.l. mosquitoes in Burkina Faso on mosquito survival, blood feeding and fecundity propensy.Methods To assess entomopathogenic effects of C. violaceum infection on mosquitoes, three different types of bioassays were performed in laboratory. These bioassays were the impact of C.violaceum infection on mosquito survival, blood feeding and fecundity, respectively. During bioassays mosquitoes were infected through the well-established system of cotton ball soaked with 6% glucose containing C.violaceum.Results C. violaceum kills pyrethroid resistant mosquitoes An. coluzzii (LT80 of 8.78 ± 0.18 at 10 8 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~59%, P<0.001) the mosquito feeding willingness from day 4-post infection (~81% would seek a host to blood feed) to 9- day post infection (22 ± 4.62% would seek a host to blood feed). Moreover, C. violaceum considerably jeopardized the egg laying (~16 eggs laid /mosquitoes with C. violaceum infected mosquitoes vs ~129 eggs laid / mosquitoes with control mosquitoes) and hatching of mosquitoes (A reduction of ~22 % of hatching rate with C. violaceum infected mosquitoes). Compared to the bacterial uninfected mosquitoes, mosquitoes infected with C. violaceum showed indeed significantly higher retention rates of immature eggs and follicles.Conclusion These data showed important properties of Burkina Faso C. violaceum strains , which are highly virulent against insecticide resistant Anopheles coluzzii , and reduce both mosquito blood feeding and fecundity propensities. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will certainly provide useful information render it a potential candidate for the biological control strategies of malaria and other disease vectors.


2020 ◽  
Author(s):  
Edounou Jacques Gnambani ◽  
Etienne Bilgo ◽  
Adama Sanou ◽  
Roch K. Dabire ◽  
Abdoulaye Diabate

Abstract Background: This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective. Here, we studied the impact of Chromobacterium violaceum infections isolated from both larvae and adult of wild caught Anopheles gambiae s.l. mosquitoes in Burkina Faso on mosquito survival, blood feeding and fecundity propensy. Methods: To assess entomopathogenic effects of C. violaceum infection on mosquitoes, three different types of bioassays were performed in laboratory. These bioassays aimed to evaluate the impact of C.violaceum infection on mosquito survival, blood feeding and fecundity, respectively. During bioassays mosquitoes were infected through the well-established system of cotton ball soaked with 6% glucose containing C.violaceum.Results: C. violaceum kills pyrethroid resistant mosquitoes An. coluzzii (LT80 of 8.78 days ± 0.18 at 108 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~59%, P<0.001) the mosquito feeding willingness from day 4-post infection (~81% would seek a host to blood feed) to 9- day post infection (22 ± 4.62% would seek a host to blood feed). Moreover, C. violaceum considerably jeopardized the egg laying (~16 eggs laid /mosquitoes with C. violaceum infected mosquitoes vs ~129 eggs laid / mosquitoes with control mosquitoes) and hatching of mosquitoes (A reduction of ~22 % of hatching rate with C. violaceum infected mosquitoes). Compared to the bacterial uninfected mosquitoes, mosquitoes infected with C. violaceum showed indeed significantly higher retention rates of immature eggs and follicles. Conclusion: These data showed important properties of Burkina Faso C. violaceum strains, which are highly virulent against insecticide resistant Anopheles coluzzii, and reduce both mosquito blood feeding and fecundity propensities. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will certainly provide useful information render it a potential candidate for the biological control strategies of malaria and other disease vectors.


2018 ◽  
Author(s):  
Edounou Jacques Gnambani ◽  
Etienne Bilgo ◽  
Adama Sanou ◽  
Roch K. Dabiré ◽  
Abdoulaye Diabaté

AbstractThis is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. Here, we studied the impact of Chromobacterium violaceum infections isolated from wild caught Anopheles gambiae s.l. mosquitoes in Burkina Faso on mosquito survival, blood feeding and fecundity propensy. C. violaceum kills pyrethroid resistant mosquitoes An. coluzzii (LT80 ~ at 108 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~59%, P<0.001) the mosquito feeding willingness from day 4-post infection to 9-day post infection. Moreover, C.violaceum considerably jeopardized the mosquito egg laying and hatching of mosquitoes by ~77.93% and ~22 % respectively. Mosquitoes infected with C. violaceum also showed significantly higher retention rates of immature eggs and follicles. These data showed important entomopathogenic properties of Burkina Faso C. violaceum strains. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will certainly provide useful information render it a potential candidate for the biological control strategies of malaria.


2008 ◽  
Vol 38 (5) ◽  
pp. 549-560 ◽  
Author(s):  
Yves Decrem ◽  
Marcel Mariller ◽  
Kathia Lahaye ◽  
Virginie Blasioli ◽  
Jérôme Beaufays ◽  
...  

2021 ◽  
Author(s):  
Roger Sanou ◽  
Hamidou Maïga ◽  
Bazoumana D. Sow ◽  
Adama Ouema ◽  
Abdoul Azize Millogo ◽  
...  

Abstract Background: The Lehmann Funnel Entry Trap has proven to be effective in catching and killing up to 70% of mosquitoes even in a high mosquito density setting. A medium-sized prototype was selected and deployed at large scale in Vallée du Kou 3 (VK3) in the Southwest of Burkina Faso to assess its entomological and sociological impact.Method: Overall, 1,313 traps impregnated with Pyriproxyfen (PPF), were deployed. Of them, 12 traps were randomly selected across the intervention village compared to houses without traps in the control village, Vallée du Kou 5 (VK5). Traps were placed at the windows while doors were blocked with curtains. Mosquitoes were collected in traps and matching houses in VK3 and in houses only in VK5, for nine days per month from July to October 2015. Collected mosquitoes were morphologically identified, counted, and preserved in 80% ethanol vials for subsequent analyses, including resistance genes and female mosquito age structure. The impact of the trap on mosquito density at community level was assessed by performing a pyrethrum spray catch (PSC) with bioassays to assess the effect of PPF. Results: Overall mosquito density was reduced by ~90% in all houses equipped with traps in VK3. At the community level, while mosquito density before intervention was 33% higher in VK3 than in VK5, it was 47% higher in VK5 after the intervention. Old female mosquito numbers increased in VK5 by 12% in October but not in VK3, indicating that the traps were cumulatively killing old females. The additional effect of PPF was to limit egg-laying, with a smaller number of eggs counted, and with a low hatching rate. Mosquitoes were highly resistant to pyrethroids with ~0.9 frequency of the kdr mutation. The trap was well accepted by the communities as 85.4% and 93.8% of interviewees in VK3 found the traps reducing mosquito bites with peaceful sleep respectively. Conclusion: The Lehmann Funnel Entry Trap has real potential to control malaria mosquito populations and can be widely used to sustain the global effort of malaria elimination.


2021 ◽  
Vol 19 (1) ◽  
pp. 74-89
Author(s):  
Amandeep Kaur ◽  
Parveen Chhuneja ◽  
Puja Srivastava ◽  
Kuldeep Singh ◽  
Satinder Kaur

AbstractAddressing the impact of heat stress during flowering and grain filling is critical to sustaining wheat productivity to meet a steadily increasing demand from a rapidly growing world population. Crop wild progenitor species of wheat possess a wealth of genetic diversity for several biotic and abiotic stresses, and morphological traits and can serve as valuable donors. The transfer of useful variation from the diploid progenitor, Aegilops tauschii, to hexaploid wheat can be done through the generation of synthetic hexaploid wheat (SHW). The present study targeted the identification of potential primary SHWs to introduce new genetic variability for heat stress tolerance. Selected SHWs were screened for different yield-associated traits along with three advanced breeding lines and durum parents as checks for assessing terminal heat stress tolerance under timely and late sown conditions for two consecutive seasons. Heat tolerance index based on the number of productive tillers and thousand grain weight indicated that three synthetics, syn9809 (64.32, 78.80), syn14128 (50.30, 78.28) and syn14135 (58.16, 76.03), were able to endure terminal heat stress better than other SHWs as well as checks. One of these synthetics, syn14128, recorded a minimum reduction in thousand kernel weight (21%), chlorophyll content (2.56%), grain width (1.07%) despite minimum grain-filling duration (36.15 d) and has been selected as a potential candidate for introducing the terminal heat stress tolerance in wheat breeding programmes. Breeding efforts using these candidate donors will help develop lines with a higher potential to express the desired heat stress-tolerant phenotype under field conditions.


2020 ◽  
Vol 5 (9) ◽  
pp. e002879
Author(s):  
Thomas Druetz ◽  
Lalique Browne ◽  
Frank Bicaba ◽  
Matthew Ian Mitchell ◽  
Abel Bicaba

IntroductionMost of the literature on terrorist attacks’ health impacts has focused on direct victims rather than on distal consequences in the overall population. There is limited knowledge on how terrorist attacks can be detrimental to access to healthcare services. The objective of this study is to assess the impact of terrorist attacks on the utilisation of maternal healthcare services by examining the case of Burkina Faso.MethodsThis longitudinal quasi-experimental study uses multiple interrupted time series analysis. Utilisation of healthcare services data was extracted from the National Health Information System in Burkina Faso. Data span the period of January 2013–December 2018 and include all public primary healthcare centres and district hospitals. Terrorist attack data were extracted from the Armed Conflict Location and Event Data project. Negative binomial regression models were fitted with fixed effects to isolate the immediate and long-term effects of terrorist attacks on three outcomes (antenatal care visits, of facility deliveries and of cesarean sections).ResultsDuring the next month of an attack, the incidence of assisted deliveries in healthcare facilities is significantly reduced by 3.8% (95% CI 1.3 to 6.3). Multiple attacks have immediate effects more pronounced than single attacks. Longitudinal analysis show that the incremental number of terrorist attacks is associated with a decrease of the three outcomes. For every additional attack in a commune, the incidence of cesarean sections is reduced by 7.7% (95% CI 4.7 to 10.7) while, for assisted deliveries, it is reduced by 2.5% (95% CI 1.9 to 3.1) and, for antenatal care visits, by 1.8% (95% CI 1.2 to 2.5).ConclusionTerrorist attacks constitute a new barrier to access of maternal healthcare in Burkina Faso. The exponential increase in terrorist activities in West Africa is expected to have negative effects on maternal health in the entire region.


Sign in / Sign up

Export Citation Format

Share Document