scholarly journals Structural Analysis And Topology Optimization Design For Bandwidth Extension of Magnetoelectric Seismometer

Author(s):  
Zhenjing Yao ◽  
Jingyi Zhang ◽  
Zhitao Gao ◽  
Yaran Liu ◽  
Mingyang Li

Abstract Magnetoelectric seismometers can measure earthquake information and play an important role in earthquake monitoring. Aiming at the wider effective frequency bandwidth of magnetoelectric seismometers, a novel seismometer based on topology optimization structural pendulum is reported. The topology optimization of leaf spring structure in magnetoelectric seismometer is designed, the natural frequency and spurious frequency characteristics of the novel seismometer are analyzed. Based on variable density theory, the Solid Isotropic Material with Penalization (SIMP) model of the seismometer is established, and the Method of Moving Asymmetric (MMA) is adopted to obtain the optimal topology structure. The finite element analysis using ANSYS shows that novel seismometer after topology optimization structure is characteristic with lower natural frequency and higher spurious frequency than that of before optimization seismometer. The real vibration experimental results indicate that after topology optimization, the effective frequency bandwidth of seismometer is increased by 55.50%, improving from [1s, 51Hz] to [4s, 78Hz].

2012 ◽  
Vol 562-564 ◽  
pp. 705-708
Author(s):  
Zhi Jun Zhang ◽  
Hong Lei Jia ◽  
Ji Yu Sun ◽  
Ming Ming Wang

Topology optimization method based on variable density and the minimum compliance objective function was used on designing the wheel spokes. SIMP material interpolation model was established to compensate these deficiencies of variable density method. Considering manufacturing process and stress distribution, five bolt wheels was chose to topology optimization. The percentage of material removal of the optimal topology 40% was reasonable. Finite element analysis was used to test the strength and stiffness of the structure of the wheel, the result meets the requirements after wheel topology optimization, and reduces the quality of wheels to 7.76kg, achieve the goals of lightweight design.


2014 ◽  
Vol 574 ◽  
pp. 173-178
Author(s):  
Ling Ling ◽  
Yong Huang

The virtual prototyping technology in corporation with a finite element analysis was first used to analyze the strength and stiffness of gearbox casing in an electric bus. On the basis of this analysis, the topology optimization technology (TOT) based on the variable density method was introduced into the design of gearbox casing which takes the minimized total flexibility of gearbox as the objective function, the density of each cell as the design variable and the volume as the design constraint. Then, according to the results of topology optimization and the requirements of manufacturing process, the structure of gearbox casing was designed in detail. Finally, the stress analysis of the housing model of the final design was carried out. The results show that the optimized housing not only meets the design requirements of stiffness and strength, but also reduces its quality, which can make the performance of gearbox achieve optimal.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


2013 ◽  
Vol 579-580 ◽  
pp. 345-348 ◽  
Author(s):  
Huan Gong Wang ◽  
Li Ping Wang ◽  
Ning Min Kang ◽  
Run Cheng Li

The base of Parallel loading device withstand the pressure of hundreds of tons, Limited by the conditions of use, All components of the device must be manual handling, so Its weight becomes very sensitive. The initial design weight of base are about 170 kg, By handling environmental constraints, four men lift is also very convenient, Therefore it's urgent to reduce weight. In this paper, a powerful modeling capabilities of UG combined ANSYS topology optimization module on the base for a topology optimization, We refer to the shape of topology optimization design of the final design of the structure. Through finite element analysis, the structural stiffness and strength to meet the design requirements, And weight decreased from about 170 kg to 120 kg, reduced by nearly 30%.


2014 ◽  
Vol 607 ◽  
pp. 573-576
Author(s):  
En Guang Zhang ◽  
Li Wang ◽  
Wen Ju Shan

The structure and the load-carrying capability of the front board of injection molding machine are more complex. The error of the approximation algorithm employed in engineering is larger so that the board may become invalid in the process of using, The finite element analysis can obtain the stress distribution in the parts so as to improve the accuracy of calculation and the quality of design; through The topology optimization analysis will take the initiative to find the optimal plan, which provides the theoretical basis for the improvement of the load-carrying capability and the structure design of board. This paper have conducted a parametric design, finite element analysis and the topology optimization design for a motional board of the injection molding machine using “Advanced simulation” of NX8.0, and get a quantitative conclusion of that the motional board volume is reduced and its stiffness is significantly enhanced.


2013 ◽  
Vol 834-836 ◽  
pp. 1464-1469
Author(s):  
Sheng Mei Luo ◽  
Zhao Yang Niu ◽  
Wei Liu ◽  
Fu Fang Luo ◽  
Jun Jun Jiang

The detail analysis proposal of the cylinder body is put forward for the automatic tool change mechanism of the QYJ-21 type horizontal machining center. It consists of three main aspects. Firstly, the dimensional model of the cylinders arm bracket portion will be created. Secondly, the topology optimization design of the arm bracket is implemented based on ANSYS Workbench. Finally, meeting the stiffness requirements, the optimal topology shape will be established, for it had the lightest weight.


2013 ◽  
Vol 300-301 ◽  
pp. 280-284 ◽  
Author(s):  
Fu Sheng Qiu ◽  
Wu Qiang Ji ◽  
Hou Chao Xu

The topology optimization design problem with multiple constraints for the complex vertical tail structure is studied in this paper. The variable density structural topology optimization method is improved by introducing a constraint factor. According to the different structural constraints and design requirements, variable factors and element pseudo density are initialized via finite element method. This method is controlled by the constraint factors, and the improved method combining with Rational Approximation of Material Properties (RAMP) density-stiffness interpolation model with optimality criteria methods (OC), the vertical tail’s stiffness optimization has been finished. The density-stiffness interpolation model, the mathematical model of variable density method with constraint factor, the structural optimization model, the solution model of the OC method, the design variables iterative format, are given in this paper and the algorithm with Matlab program is realized. Lastly, a sample vertical tail case is introduced to validate the feasibility of the algorithm by operating the results and analyzing the data.


Sign in / Sign up

Export Citation Format

Share Document