Application of Topological Optimization on Aluminum Alloy Automobile Wheel Designing

2012 ◽  
Vol 562-564 ◽  
pp. 705-708
Author(s):  
Zhi Jun Zhang ◽  
Hong Lei Jia ◽  
Ji Yu Sun ◽  
Ming Ming Wang

Topology optimization method based on variable density and the minimum compliance objective function was used on designing the wheel spokes. SIMP material interpolation model was established to compensate these deficiencies of variable density method. Considering manufacturing process and stress distribution, five bolt wheels was chose to topology optimization. The percentage of material removal of the optimal topology 40% was reasonable. Finite element analysis was used to test the strength and stiffness of the structure of the wheel, the result meets the requirements after wheel topology optimization, and reduces the quality of wheels to 7.76kg, achieve the goals of lightweight design.

2020 ◽  
Vol 103 (3) ◽  
pp. 003685042093648
Author(s):  
Liansen Sha ◽  
Andi Lin ◽  
Xinqiao Zhao ◽  
Shaolong Kuang

Topology optimization is a widely used lightweight design method for structural design of the collaborative robot. In this article, a topology optimization method for the robot lightweight design is proposed based on finite element analysis of the assembly so as to get the minimized weight and to avoid the stress analysis distortion phenomenon that compared the conventional topology optimization method by adding equivalent confining forces at the analyzed part’s boundary. For this method, the stress and deformation of the robot’s parts are calculated based on the finite element analysis of the assembly model. Then, the structure of the parts is redesigned with the goal of minimized mass and the constraint of maximum displacement of the robot’s end by topology optimization. The proposed method has the advantages of a better lightweight effect compared with the conventional one, which is demonstrated by a simple two-linkage robot lightweight design. Finally, the method is applied on a 5 degree of freedom upper-limb exoskeleton robot for lightweight design. Results show that there is a 10.4% reduction of the mass compared with the conventional method.


2014 ◽  
Vol 574 ◽  
pp. 173-178
Author(s):  
Ling Ling ◽  
Yong Huang

The virtual prototyping technology in corporation with a finite element analysis was first used to analyze the strength and stiffness of gearbox casing in an electric bus. On the basis of this analysis, the topology optimization technology (TOT) based on the variable density method was introduced into the design of gearbox casing which takes the minimized total flexibility of gearbox as the objective function, the density of each cell as the design variable and the volume as the design constraint. Then, according to the results of topology optimization and the requirements of manufacturing process, the structure of gearbox casing was designed in detail. Finally, the stress analysis of the housing model of the final design was carried out. The results show that the optimized housing not only meets the design requirements of stiffness and strength, but also reduces its quality, which can make the performance of gearbox achieve optimal.


2013 ◽  
Vol 694-697 ◽  
pp. 2725-2728
Author(s):  
Xuan Mu ◽  
Ke Zhang ◽  
De Hong Zhao ◽  
Yu Hou Wu

To reduce the overall mass of the machine tools, this paper made the structural lightweight design to crossbeams of the HTM series gantry machine by topology optimization. The topology optimization mathematical model was built by taking the quality as the constraint, overall stiffness to the maximum (complicance to the minimum) as the design goals. It also took HTM50200 Turning Milling Center as an example, put forward an asymmetric layout structure of auxiliary hole according to the optimization results by numerical simulation and calculation of ANSYS. By verified, the mass of the structure was 2.76% lower than traditional structure, and the maximum deformation decreased by 16.07%. By applying the topology optimization method to the design process of the HTM series machining center, the utilization of materials will be improved and the production costs will be reduced.


2018 ◽  
Vol 198 ◽  
pp. 05008
Author(s):  
ying-lei Li ◽  
zong-jie Cao ◽  
Zi-li Wang

In this paper, a variable density topological optimization method is derived on the basis of Lagrange function, and the RAMP interpolation model is selected to optimize the frame structure of aircrafts with variable density method. For an example, the ordinary frame structure of the domestic planes is taken to illustrate validity of the presented method. The numerical model of the aircraft frames is obtained. The optimal design analysis of the model structural distribution and the weight loss requirement of the aircraft frame structures are realized. In conclusion, the structural distribution law of the topology optimization is summarized according to the topology optimization structures.


2021 ◽  
Author(s):  
Zhenjing Yao ◽  
Jingyi Zhang ◽  
Zhitao Gao ◽  
Yaran Liu ◽  
Mingyang Li

Abstract Magnetoelectric seismometers can measure earthquake information and play an important role in earthquake monitoring. Aiming at the wider effective frequency bandwidth of magnetoelectric seismometers, a novel seismometer based on topology optimization structural pendulum is reported. The topology optimization of leaf spring structure in magnetoelectric seismometer is designed, the natural frequency and spurious frequency characteristics of the novel seismometer are analyzed. Based on variable density theory, the Solid Isotropic Material with Penalization (SIMP) model of the seismometer is established, and the Method of Moving Asymmetric (MMA) is adopted to obtain the optimal topology structure. The finite element analysis using ANSYS shows that novel seismometer after topology optimization structure is characteristic with lower natural frequency and higher spurious frequency than that of before optimization seismometer. The real vibration experimental results indicate that after topology optimization, the effective frequency bandwidth of seismometer is increased by 55.50%, improving from [1s, 51Hz] to [4s, 78Hz].


2019 ◽  
Vol 17 (09) ◽  
pp. 1950064
Author(s):  
P. F. Xu ◽  
S. Y. Duan ◽  
F. Wang

Lightweight of wheel hubs is the linchpin for reducing the unsprung mass and improving the vehicle dynamic and braking performance of vehicles, thus, sustaining stability and comfortability. Current experience-based lightweight designs of wheel hubs have been argued to render uneven distribution of materials. This work develops a novel method to combine the reverse modeling technique with the topological optimization method to derive lightweight wheel hubs based on the principles of mechanics. A reverse modeling technique is first adopted to scan and reproduce the prototype 3D geometry of the wheel hub with solid ribs. The finite element method (FEM) is then applied to perform stress analysis to identify the maximum stress and its location of wheel hub under variable potential physical conditions. The finite element model is then divided into optimization region and nonoptimized region: the former is the interior portion of spoke and the latter is the outer surface of the spoke. A topology optimization is then conducted to remove the optimization region which is interior material of the spokes. The hollow wheel hub is then reconstructed with constant wall thickness about 5[Formula: see text]mm via a reverse modeling technique. The results show that the reconstructed model can reduce the mass of 12.7% compared to the pre-optimized model. The present method of this paper can guarantee the optimal distribution of wheel hub material based on mechanics principle. It can be implemented automatically to shorten the time interval for optimal lightweight designs. It is especially preferable for many existing structures and components as it maintains the structural appearance of optimization object.


Author(s):  
Kuang-Wu Chou ◽  
Chang-Wei Huang

This study proposes a new element-based method to solve structural topology optimization problems with non-uniform meshes. The objective function is to minimize the compliance of a structure, subject to a volume constraint. For a structure of a fixed volume, the method is intended to find a topology that could almost conform to the compliance minimum. The method is refined from the evolutionary switching method, whose policy of exchanging elements is improved by replacing some empirical decisions with ones according to optimization theories. The method has the evolutionary stage and the element exchange stage to conduct topology optimization. The evolutionary stage uses the evolutionary structural optimization method to remove inefficient elements until the volume constraint is satisfied. The element exchange stage performs a procedure refined from the element exchange method. Notably, the procedures of both stages are refined to conduct non-uniform finite element meshes. The proposed method was implemented to use the Abaqus Python scripting interface to call the services of Abaqus such as running analysis and retrieving the output database of an analysis. Numerical examples demonstrate that the proposed optimization method could determine the optimal topology of a structure that is subject to a volume constraint and whose mesh is non-uniform.


2020 ◽  
Vol 11 (1) ◽  
pp. 15 ◽  
Author(s):  
Jixiong Li ◽  
Jianliang Tan ◽  
Jianbin Dong

In order to obtain a lightweight front upright of an electric formula car’s suspension, the topology optimization method is used in the front upright structure design. The mathematical model of the lightweight optimization design is constructed, and the geometric model of the initial design of the front upright is subjected to the ultimate load condition. The structural optimization of a front upright resulted in the mass reduction of the upright by 60.43%. The optimized model was simulated and verified regarding the strength, stiffness, and safety factor under three different conditions, namely turning braking, emergency braking, and sharp turning. In the experiment, the uprights were machined and assembled and integrated into the racing suspension. The experimental results showed that the optimized front uprights met the requirements of performance.


2019 ◽  
Vol 893 ◽  
pp. 78-83
Author(s):  
Meng Meng Song ◽  
Yang Lin ◽  
Shun Gen Xiao ◽  
Li Xia Huang ◽  
Chen Hui Qiu ◽  
...  

In this paper, the cold launch test platform is taken as the research object, theoptimization model of this test platform is established by using topology optimization method. First,the topology optimization goal of the structure is determined, and then the constraints are carriedout. Finally, optimized and non-optimized areas are identified, and the result is processed. Afteroptimization, the quality of the test platform was reduced by 2.9 tons under the conditions of use.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1837 ◽  
Author(s):  
Martin Sotola ◽  
David Stareczek ◽  
David Rybansky ◽  
Jiri Prokop ◽  
Pavel Marsalek

This paper presents a new design procedure for production of a transtibial prosthesis bed stump by three-dimensional (3D) printing with topological optimization. The suggested procedure combines the medical perspective with finite element analysis and facilitates regaining the symmetry in patients with transtibial prosthesis, which leads to life improvement. The particular focus of the study is the weight reduction of the lower part of the bed stump, while taking into account its stiffness and load-bearing capacity. The first part of the work deals with the analysis of the subject geometry of the bed stump, which is usually oversized in terms of the weight and stiffness that are necessary for the current application. In the second part, an analysis of walking biomechanics with a focus on the impact and rebound phases is presented. Based on the obtained information, a spatial model of the lower part of the bed stump is proposed in the third phase, in which the finite element method is described. In the fourth part, the topological optimization method is used for reducing the structure weight. In the last part, the results of the designed model are analyzed. Finally, the recommendations for the settings of the method are presented. The work is based on the practical industry requirements, and the obtained results will be reflected in the design of new types of transtibial prosthesis.


Sign in / Sign up

Export Citation Format

Share Document