Vertical Tail Topology Optimization Design Based on the Variable Density Method with Constraint Factor

2013 ◽  
Vol 300-301 ◽  
pp. 280-284 ◽  
Author(s):  
Fu Sheng Qiu ◽  
Wu Qiang Ji ◽  
Hou Chao Xu

The topology optimization design problem with multiple constraints for the complex vertical tail structure is studied in this paper. The variable density structural topology optimization method is improved by introducing a constraint factor. According to the different structural constraints and design requirements, variable factors and element pseudo density are initialized via finite element method. This method is controlled by the constraint factors, and the improved method combining with Rational Approximation of Material Properties (RAMP) density-stiffness interpolation model with optimality criteria methods (OC), the vertical tail’s stiffness optimization has been finished. The density-stiffness interpolation model, the mathematical model of variable density method with constraint factor, the structural optimization model, the solution model of the OC method, the design variables iterative format, are given in this paper and the algorithm with Matlab program is realized. Lastly, a sample vertical tail case is introduced to validate the feasibility of the algorithm by operating the results and analyzing the data.

2010 ◽  
Vol 455 ◽  
pp. 397-401
Author(s):  
S.G. Yao ◽  
Hang Li

Based on Topology optimization method of continuum the structural dynamic model has been built by constraint condition of volume and objective function of column natural frequency. In order to improve precision the dynamic characteristics of non-design region have been considered in optimization process. The column of structural optimization design has been done by applying topology optimization. The quality has not only reduced, but also the dynamic characteristic of the column has been improved. Thus the design effect has been reached.


2018 ◽  
Vol 198 ◽  
pp. 05008
Author(s):  
ying-lei Li ◽  
zong-jie Cao ◽  
Zi-li Wang

In this paper, a variable density topological optimization method is derived on the basis of Lagrange function, and the RAMP interpolation model is selected to optimize the frame structure of aircrafts with variable density method. For an example, the ordinary frame structure of the domestic planes is taken to illustrate validity of the presented method. The numerical model of the aircraft frames is obtained. The optimal design analysis of the model structural distribution and the weight loss requirement of the aircraft frame structures are realized. In conclusion, the structural distribution law of the topology optimization is summarized according to the topology optimization structures.


2012 ◽  
Vol 590 ◽  
pp. 341-345 ◽  
Author(s):  
Yong Hai Wu

A special vehicle frame as the research object, its topology optimization mathematical model and its algorithm is established based on variable density method. Topology optimization method of continuum structures is applied to the frame structural design of this special vehicle using Optistruct solver. Take the least flexibility of frame as design goal; topology optimization design of frame structure was carried under the condition of flexure, torsion and flexure-torsion. New structural model of frame was determined according to results of topology optimization and engineering experience. The calculation of the stress, deformation and the volume for optimization results was conducted with ANSYS software, and compared with the data before optimization. The results showed that the safety performance of optimized frame improved, and the weight reduced.


Author(s):  
Akihiro Takezawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

This paper discuses a new topology optimization method using frame elements for the design of mechanical structures at the conceptual design phase. The optimal configurations are determined by maximizing multiple eigen-frequencies in order to obtain the most stable structures for dynamic problems. The optimization problem is formulated using frame elements having ellipsoidal cross-sections, as the simplest case. Construction of the optimization procedure is based on CONLIN and the complementary strain energy concept. Finally, several examples are presented to confirm that the proposed method is useful for the topology optimization method discussed here.


2015 ◽  
Vol 07 (06) ◽  
pp. 1550085 ◽  
Author(s):  
Z. C. He ◽  
G. Y. Zhang ◽  
L. Deng ◽  
Eric Li ◽  
G. R. Liu

The node-based smoothed finite element method (NS-FEM) proposed recently has shown very good properties in solid mechanics, such as providing much better gradient solutions. In this paper, the topology optimization design of the continuum structures under static load is formulated on the basis of NS-FEM. As the node-based smoothing domain is the sub-unit of assembling stiffness matrix in the NS-FEM, the relative density of node-based smoothing domains serves as design variables. In this formulation, the compliance minimization is considered as an objective function, and the topology optimization model is developed using the solid isotropic material with penalization (SIMP) interpolation scheme. The topology optimization problem is then solved by the optimality criteria (OC) method. Finally, the feasibility and efficiency of the proposed method are illustrated with both 2D and 3D examples that are widely used in the topology optimization design.


Author(s):  
Mads Baandrup ◽  
Ole Sigmund ◽  
Niels Aage

<p>This work applies a ultra large scale topology optimization method to study the optimal structure of bridge girders in cable supported bridges.</p><p>The current classic orthotropic box girder designs are limited in further development and optimiza­ tion, and suffer from substantial fatigue issues. A great disadvantage of the orthotropic girder is the loads being carried one direction at a time, thus creating stress hot spots and fatigue problems. Hence, a new design concept has the potential to solve many of the limitations in the current state­ of-the-art.</p><p>We present a design method based on ultra large scale topology optimization. The highly detailed structures and fine mesh-discretization permitted by ultra large scale topology optimization reveal new design features and previously unseen eff ects. The results demonstrate the potential of gener­ ating completely different design solutions for bridge girders in cable supported bridges, which dif­ fer significantly from the classic orthotropic box girders.</p><p>The overall goal of the presented work is to identify new and innovative, but at the same time con­ structible and economically reasonable, solutions tobe implemented into the design of future cable supported bridges.</p>


Author(s):  
Kuang-Wu Chou ◽  
Chang-Wei Huang

This study proposes a new element-based method to solve structural topology optimization problems with non-uniform meshes. The objective function is to minimize the compliance of a structure, subject to a volume constraint. For a structure of a fixed volume, the method is intended to find a topology that could almost conform to the compliance minimum. The method is refined from the evolutionary switching method, whose policy of exchanging elements is improved by replacing some empirical decisions with ones according to optimization theories. The method has the evolutionary stage and the element exchange stage to conduct topology optimization. The evolutionary stage uses the evolutionary structural optimization method to remove inefficient elements until the volume constraint is satisfied. The element exchange stage performs a procedure refined from the element exchange method. Notably, the procedures of both stages are refined to conduct non-uniform finite element meshes. The proposed method was implemented to use the Abaqus Python scripting interface to call the services of Abaqus such as running analysis and retrieving the output database of an analysis. Numerical examples demonstrate that the proposed optimization method could determine the optimal topology of a structure that is subject to a volume constraint and whose mesh is non-uniform.


Sign in / Sign up

Export Citation Format

Share Document