scholarly journals Evaluation of Input Geological Parameters and Tunnel Strain for Strain-softening Rock Mass Based on GSI

Author(s):  
Lan Cui ◽  
Qian Sheng ◽  
Chen Xu ◽  
youkou dong

Abstract The regression analysis method is being widely adopted to analyse the tunnel strain, most of which ignore the strain-softening effect of the rock mass and also fail to consider the influence of support pressure, initial stress state, and rock mass strength classification in one fitting equation. This study aims to overcome these deficiencies with a regression model used to estimate the tunnel strain. A group of geological strength indexes (GSI) are configured to quantify the input strength parameters and deformation moduli for the rock mass with a quality ranging from poor to excellent. A specific numerical procedure is developed to calculate the tunnel strain around a circular opening, which is validated by comparison with those using existing methods. A nonlinear regression model is then established to analyse the obtained tunnel strain, combining twelve fitting equations to relate the tunnel strain and the factors including the support pressure, the GSI, the initial stress state, and the critical softening parameter. Particularly, three equations are for the estimation of the critical tunnel strain, the critical support pressure, and the tunnel strain under elastic behaviour, respectively; and the other nine equations are for the tunnel strain with different strain-softening behaviours. The relative significance between the GSI, the initial stress and the support pressure on the tunnel strain is assessed.

2018 ◽  
Vol 8 (5) ◽  
pp. 841 ◽  
Author(s):  
Ali Ghorbani ◽  
Hadi Hasanzadehshooiili ◽  
Łukasz Sadowski

2011 ◽  
Vol 243-249 ◽  
pp. 2601-2606 ◽  
Author(s):  
Zhi Jie Wang ◽  
Ya Sheng Luo ◽  
Hong Guo

The foundation soil of the buildings and structures is often in complex initial stress states. The dynamic torsional shear triaxial tests are carried out on undisturbed and remodeling loess under different complex initial stress states by using the remolded DTC-199 torsional cyclic load triaxial apparatus, and the effects of each complex initial stress state parameter on dynamic shear modulus of loess are discussed. Results show that, other conditions being the same, the influence of angles of initial principal stressα0on dynamic shear modulusGdof loess show a trend of the biggerα0is, the smallerGdis. The effect laws of efficient of initial intermediate principal stressb0onGdof loess are not obvious. When the dynamic shear strain is larger, the bigger initial deviator stress ratioη0is, the smallerGdof loess is. The influence of initial average principal stresspm0on loess is significant. The biggerpm0is, the biggerGdof loess is.Gdof undisturbed loess is greater than that of remodeling loess under the complex initial stress states.


Sign in / Sign up

Export Citation Format

Share Document