scholarly journals Experimental Study on Phase Conjecture Based on Two-dimensional Image and Carrying Three-dimensional Image With Mist in Electro-holographic Reconstruction *

Author(s):  
ZHAO Zhi-xiong ◽  
ZHANG Hua ◽  
Kuang Qing-yun ◽  
Li Bo ◽  
Hu Lin

Abstract A method is proposed for phase conjecture based on the intensity curve of a two-dimensional(2D) image by computing a polynomial equation. The intensity values of the 2D image, which represents the distance between the image detectors and the three-dimensional(3D) scene is converted to phase information by our method. The results of numerical calculation with phase conjecture are analyzed. And what’s more, the numerical reconstruction results with phase information obtained as initial phase factors of a complex object for Fresnel kinoform and dynamic pseudorandom-phase tomographic computer holography(DPP-TCH) are compared. The peak signal-to-noise ratio(PSNR) and correlation coefficient (CC) between the reconstructed images and original object are analyzed. An experimental system is designed for photoelectric holographic reconstruction based on phase-only liquid crystal spatial light modulator(LC-SLM) and mist screen. The electro-optical experimental results indicate that suppressed the speckle noise 3D images that can be observed with naked eye have been obtained.

2019 ◽  
Vol 5 (8) ◽  
pp. 67
Author(s):  
Zhi-Fang Gao ◽  
Hua-Dong Zheng ◽  
Ying-Jie Yu

Holographic three-dimensional (3D) imaging of Terra-Cotta Warrior model using Fractional Fourier Transform is introduced in this paper. Phase holograms of Terra-Cotta Warrior model are calculated from 60 horizontal viewing-angles by the use of fractional Fourier transform (FRT). Multiple phase holograms are calculated for each angle by adding proper pseudorandom phase to reduce the speckle noise of a reconstructed image. Experimental system based on high-resolution phase-only spatial light modulator (SLM) is built for 3D image reconstruction from the calculated phase holograms. The texture of the Terra-Cotta Warrior model is rough. The calculation of rough texture is optimized in order to show better model details. The effects of computing distance and layer thickness on imaging quality are analyzed finally.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 929
Author(s):  
Xudong Yang ◽  
Zexiao Li ◽  
Linlin Zhu ◽  
Yuchu Dong ◽  
Lei Liu ◽  
...  

Taper-cutting experiments are important means of exploring the nano-cutting mechanisms of hard and brittle materials. Under current cutting conditions, the brittle-ductile transition depth (BDTD) of a material can be obtained through a taper-cutting experiment. However, taper-cutting experiments mostly rely on ultra-precision machining tools, which have a low efficiency and high cost, and it is thus difficult to realize in situ measurements. For taper-cut surfaces, three-dimensional microscopy and two-dimensional image calculation methods are generally used to obtain the BDTDs of materials, which have a great degree of subjectivity, leading to low accuracy. In this paper, an integrated system-processing platform is designed and established in order to realize the processing, measurement, and evaluation of taper-cutting experiments on hard and brittle materials. A spectral confocal sensor is introduced to assist in the assembly and adjustment of the workpiece. This system can directly perform taper-cutting experiments rather than using ultra-precision machining tools, and a small white light interference sensor is integrated for in situ measurement of the three-dimensional topography of the cutting surface. A method for the calculation of BDTD is proposed in order to accurately obtain the BDTDs of materials based on three-dimensional data that are supplemented by two-dimensional images. The results show that the cutting effects of the integrated platform on taper cutting have a strong agreement with the effects of ultra-precision machining tools, thus proving the stability and reliability of the integrated platform. The two-dimensional image measurement results show that the proposed measurement method is accurate and feasible. Finally, microstructure arrays were fabricated on the integrated platform as a typical case of a high-precision application.


Author(s):  
Tae-Yun Kim ◽  
Hae-Gil Hwang ◽  
Heung-Kook Choi

We review computerized cancer cell image analysis and visualization research over the past 30 years. Image acquisition, feature extraction, classification, and visualization from two-dimensional to three-dimensional image algorithms are introduced with case studies of bladder, prostate, breast, and renal carcinomas.


Author(s):  
C.-Y. Kuo ◽  
J.D. Frost ◽  
J.S. Lai ◽  
L.B. Wang

Digital image analysis provides the capability for rapid measurement of particle characteristics. When an image is captured and digitized, numerous measurements can be made in near real time for each particle. Usually, image analysis techniques treat particles as two-dimensional objects since only the two-dimensional projection of the particles is captured. In this study, three-dimensional analysis of aggregate particles that was performed by attaching aggregates in sample trays with two perpendicular faces is described. After the initial projected image of the aggregates is captured and measured, the sample trays are rotated 90 degrees so that the aggregates are now perpendicular to their original orientation and the dimensions of the aggregates in the new projected image are captured and measured. The long, intermediate, and short particle dimensions ( dL, dI, and dS, respectively) provide direct measures of the flatness and elongation of the particles. Some other shape indexes can also be derived from the measurements of area and perimeter length. The proposed image analysis method was verified by comparing the results obtained with manual measurements of particle dimensions for uniform size [passing 12.7 mm (1/2 in.) sieve and retained on 9.5 mm (3/8 in.) sieve] aggregates. Three-dimensional image analysis was also performed on five aggregates of standard size No. 89 from different sources, and the results are summarized herein. The proposed method is expected to improve field quality control of aggregates used in hot mix asphalt.


Sign in / Sign up

Export Citation Format

Share Document