hard and brittle materials
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 43)

H-INDEX

16
(FIVE YEARS 4)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3340
Author(s):  
Yu Lu ◽  
Lin Kai ◽  
Qing Yang ◽  
Guangqing Du ◽  
Xun Hou ◽  
...  

Nano-structures have significant applications in many fields such as chip fabrications, nanorobotics, and solar cells. However, realizing nanoscale structures on hard and brittle materials is still challenging. In this paper, when processing the silica surface with a tightly focused Bessel beam, the smallest nanohole with ~20 nm diameter has been realized by precisely controlling the interior and superficial interaction of the silica material. An effective surface window assisted nano-drilling (SWAN) mechanism is proposed to explain the generation of such a deep subwavelength structure, which is supported by the simulation results of energy depositions.


2021 ◽  
Author(s):  
Zhongqun Li ◽  
Jiandong Xiao Xiao ◽  
Xiong HAN ◽  
Weifeng ZHANG

Abstract Elliptical ultrasonic vibration-assisted milling (EUVAM) adds high-frequency vibration to conventional milling (CM) to realize high-frequency intermittent milling. It has broad application prospects in the processing of difficult-to-cut materials such as titanium alloys, superalloys and hard and brittle materials. To reveal the mechanism of the highly intermittent cutting nature in EUVAM, according to the motion relationship between cutting edge and workpiece and the Z-map model of the workpiece, a method and its algorithm for calculating undeformed cutting thickness and thus the cutting force in EUVAM are proposed. The simulation results show that EUVAM can improve the actual cutting speed when compared with CM, and the proportion of idle cutting time will directly determine the intermittent degree of the milling process. The experiment of EUVAM is performed to verify the correctness of the proposed cutting force model, and the impact of spindle speed on the cutting force in EUVAM is also analyzed.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1363
Author(s):  
Yanyan Yan ◽  
Zhaoqing Zhang ◽  
Junli Liu ◽  
Haozhe Yan ◽  
Xiaoxu Wang

A large number of studies have shown that the height of a residual material is the key factor affecting the surface quality of ultra-precision grinding. However, the grinding process contains several random factors, such as the randomness of grinding particle size and the random distribution of grinding particles, which cause the complexity of the material removal process. In this study, taking the Nano-ZrO2 as an example, the removal process of surface materials in ultra-precision grinding of hard and brittle materials was analyzed by probability. A new calculation method for the height of surface residual materials in ultra-precision grinding of Nano-ZrO2 was proposed, and the prediction model of the three-dimensional roughness Sa and Sq were established by using this calculation method. The simulation and experimental results show that this calculation method can obtain the more accurate surface residual material height value which accords with the characteristics of three-dimensional roughness sampling, which provides a theoretical reference for the analysis of the material removal process and the surface quality evaluation of ultra-precision grinding of hard and brittle materials.


Author(s):  
Masaya Gemma ◽  
◽  
Jiayu Liu ◽  
Satoshi Sakamoto ◽  
◽  
...  

In this study, the main objective is to clarify the relationship between the material properties of the work material and the grooving properties for various work materials from hard and brittle materials to metallic materials. In this paper, in order to investigate the grinding characteristics of diamond electroplated wire tools, including the wear characteristics, we conducted grooving experiments with borosilicate glass (Pyrex), which is a kind of hard and brittle material, and aluminum alloy (A5052), and tough pitch copper (C1100), a kind of metallic material, using diamond electroplated wire tools in a work material rotation method. As a result of the grooving experiments, it was clarified that the grooving characteristics of the work materials were influenced by the hardness and brittle behavior of the materials. The groove depth is influenced by the hardness and brittleness behavior of the material. When machining hard materials, the groove depth increases slowly in the initial stage of machining due to the poor bite of the wire tool, but increases rapidly as the machining progresses. On the other hand, the groove width does not depend on the machining time or speed, but is influenced by the hardness of the material and the ease with which plastic deformation occurs. The wear of the wire tool is also influenced by the hardness and brittleness of the material. In the machining of hard materials, the wear caused by stray wire and vibration in the early stages of machining was significant. The grinding ratio calculated from the ratio of the groove depth to the amount of grinding has a very different trend for hard and brittle materials and metallic materials. In the machining of hard and brittle materials, the amount of machining increased rapidly as machining progressed, so the grinding ratio also increased, but in metallic materials, the amount of machining itself was small and the grinding ratio did not increase. For A5052, the grinding ratio tended to decrease as machining progressed. Future work In the future, it is necessary to clarify the machining conditions to reduce the wear caused by stray wire tools and vibration during the initial machining of hard materials.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5611
Author(s):  
Guangxi Li ◽  
Fan Chen ◽  
Wenbo Bie ◽  
Bo Zhao ◽  
Zongxia Fu ◽  
...  

Ultrasonic-assisted electrolytic in-process dressing (UA-ELID) grinding is a promising technology that uses a metal-bonded diamond grinding wheel to achieve a mirror surface finish on hard and brittle materials. In this paper, the UA-ELID grinding was applied to nanocomposite ceramic for investigating the cavitation effect on the processing performance. Firstly, the ultrasonic cavitation theory was utilized to define the cavitation threshold, collapse of cavitation bubbles, and variation of their radii. Next, the online monitoring system was designed to observe the ultrasonic cavitation under different ultrasonic amplitude for the actual UA-ELID grinding test. A strong effect of ultrasonic cavitation on the grinding wheel surface and the formed oxide film was experimentally proved. Besides, under the action of ultrasonic vibration, the dressing effect of the grinding wheel was improved, and the sharpness of grain increased by 43.2%, and the grain distribution was dramatically changed with the increase of ultrasonic amplitude. Compared with the conventional ELID (C-ELID) grinding, the average protrusion height increased by 14.2%, while the average grain spacing dropped by 21.2%. The UA-ELID grinding reduced the workpiece surface roughness Rz and Ra by 54.2% and 46.5%, respectively, and increased the surface residual compressive stress by 44.5%. The surface morphology observation revealed a change in the material removal mechanism and improvement of the surface quality by ultrasonic cavitation effect. These findings are considered instrumental in theoretical and experimental substantiation of the optimal UA-ELID grinding parameters for the processing of nanocomposite ceramics.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 238
Author(s):  
Weiqing Huang ◽  
Qunyou Zhong ◽  
Dawei An ◽  
Chenglong Yang ◽  
Yi Zhang

Ultrasonic-assisted grinding processing can effectively reduce the surface roughness and enhance the processing efficiency in the processing of hard and brittle materials. However, the most common ultrasonic assisted grinding is a type of contact ultrasonic grinding where the grinding tool directly contacts the workpiece, which means that it is necessary to accurately control the pre-pressure of the grinding tool on the workpiece. The control of pre-pressure will inevitably increase the complexity of the grinding device, and it is easy to wear the workpiece because of improper pre-pressure control. In this paper, a non-contact ultrasonic grinding method is proposed and the machining mechanism of non-contact ultrasonic grinding is revealed. The resonant frequency of the ultrasonic vibration system and vibration amplitude of the grinding tool working face were simulated and experimentally tested, respectively. Then, the experiment of non-contact ultrasonic grinding of a sapphire wafer was carried out. The result showed that non-contact ultrasonic grinding of the sapphire wafer could reduce the surface roughness by 48.6%. Compared with traditional contact grinding of sapphire wafer under certain pre-pressure conditions, the experimental results show that non-contact ultrasonic grinding has better effects in reducing surface roughness, improving processing efficiency, and improving the quality uniformity of the workpiece machining surface.


2021 ◽  
Author(s):  
Zongchao Geng ◽  
Zhen Tong ◽  
Wenbin Zhong ◽  
Guoqin Huang ◽  
Changcai Cui ◽  
...  

Abstract The freeform surfaces including both the aspherical and prismatic concave/convex have been widely utilized in optical, electronical, and biomedical areas. Most recently, it is reported that grinding with structured wheels provides new possibility to generate patterns on hard and brittle materials. This paper reports the latest research progress on micro-grooving glass ceramic using laser structured bronze bond diamond grinding wheels. A nanosecond pulse laser is firstly integrated into an ultra-precision machine tool and used for the in-line conditioning of super abrasive grinding wheels, i.e. truing, dressing, and profiling/texturing. Meanwhile, an offset compensation method, considering the shifting depth of focus (DoF) at different laser irradiation position, is proposed to accurately generate various profiles on the periphery of the grinding wheels. Three types of patterns (riblets, grooves, and pillars) are successfully fabricated on the ceramic substrate using the laser textured grinding wheels. The results indicate that the integrated laser system offers high flexibility and accuracy in shaping super abrasive grinding wheels, and the grinding using textured grinding wheels provide a promising solution to generate functional structures on hard and brittle materials.


Sign in / Sign up

Export Citation Format

Share Document