scholarly journals Transmittance of Tapered Photonic Crystal Fibers With Absorbing Coatings

Author(s):  
Mauricio Salazar Sicacha ◽  
Vladimir (or Uladzimir) Petrovich Minkovich ◽  
Alexander B. Sotsky ◽  
Artur V. Shilov ◽  
Luidmila I. Sotskaya

Abstract The interaction effect of the fundamental mode of a photonic crystal fiber (PCF) with a thin-film absorbing coating deposited on a surface of a fiber cladding on the optical transmission of the PCF is studied. It is shown that the transmission has a quasi-periodic spectrum that is determined either by a resonance coupling between the leaky fundamental PCF mode and leaky modes of the coating, or between the leaky fundamental PCF mode and cladding modes localized between PCF air channels and the coating. Examples are presented of using this effect for fiber-optic sensors of refractive index, pressure, and for sensing an adsorption layer of ammonia molecules deposited on a coating surface contacting with air.

Author(s):  
Mauricio Salazar Sicacha ◽  
Vladimir P. Minkovich ◽  
Alexander B. Sotsky ◽  
Artur V. Shilov ◽  
Luidmila I. Sotskaya ◽  
...  

AbstractThe interaction effect of the fundamental mode in a special photonic crystal fiber (PCF) with a thin-film absorbing coating deposited on a surface of a fiber cladding on the optical transmission of the PCF is theoretically studied. It is shown that the transmission has a multi-peak spectrum that is determined by the resonance capture of the fundamental PCF mode energy by the coating. In some cases, this capture is explained by a resonance coupling between the fundamental core mode and leaky modes of the coating, or between the fundamental PCF mode and cladding modes located between PCF air channels and the coating. Examples are presented of using this effect to develop fiber-optic sensors of refractive index or pressure, and to sense a nanoscale adsorption layer of ammonia molecules deposited on a coating surface contacting air.


2020 ◽  
Vol 238 ◽  
pp. 08005
Author(s):  
Mauricio Salazar Sicacha ◽  
Vladimir P. Minkovich ◽  
Alexander B. Sotsky ◽  
Artur V. Shilov ◽  
Luidmila I. Sotskaya

The interaction of the adiabatically tapered photonic crystal fiber fundamental mode with a thin-film absorbing coating, deposited on a surface of a taper waist, on transmission of a tapered fiber is studied. Examples of using this interaction in refractive index sensors and for detection of an adsorption layer with ammonia molecules upon contact of the absorbing coating with a liquid medium are presented. It is obtained that a pronounced sensory effect occurs in the case of a resonant coupling between the fundamental fiber mode and cladding modes localized between photonic crystal fiber air channels and the absorbing coating.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
IS Amiri ◽  
Ahmed Nabih Zaki Rashed

AbstractThe study has outlined various photonic crystal fibers (PCFs) configurations for the key solution to the optimization of data rates transmission. The proposed fibers that are namely octagonal photonic crystal fiber (OPCF), hexagonal photonic crystal fiber (HPCF), and elliptical photonic crystal fiber (E-PCF) are used in the system. The dispersion parameter coefficient, pulse broadening variations, and data rates transmission are examined for proposed fibers under the same fiber lengths and number of quantization level with using pulse code modulation (PCM). The system performance is enhanced with OPCF with reducing dispersion factor, pulse broadening effects and consequently increasing data rates transmission.


2011 ◽  
Vol 30 (3) ◽  
pp. 178-191 ◽  
Author(s):  
Saeed Golmohammadi ◽  
Hashem Imani ◽  
Amin Khalafi ◽  
Ghader Karimian ◽  
Ali Rostami

2019 ◽  
Vol 16 (9) ◽  
pp. 095103
Author(s):  
Lj Kuzmanović ◽  
A Simović ◽  
M S Kovačević ◽  
S Savović ◽  
A Djordjevich

2014 ◽  
Vol 62 (4) ◽  
pp. 683-689 ◽  
Author(s):  
K. Barczak

Abstract The phenomenon of optical birefringence in optical fibers is caused by external factors and stress induced by the manufacturing process. This optical birefringence makes it difficult to apply optical fibers as a polarimetric sensors head. Author of this paper, proposes the application of index guiding photonic crystal fibers because stress values in a fiber core caused by internal and external factors are lower. In this paper investigation results extended in comparison with the previous author’s investigations are presented. This extension relies on investigation of magnetooptic for wavelength 405 nm. On the basis of experimental results optimal work points of optical sensing fibers were determined.


Sign in / Sign up

Export Citation Format

Share Document