refractive index sensors
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 55)

H-INDEX

27
(FIVE YEARS 6)

Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
Lina Suo ◽  
Haimiao Zhou ◽  
Ya-Pei Peng ◽  
Fan Yang ◽  
Hsiang-Chen Chui ◽  
...  

We demonstrate high sensitivity fiber refractive index (RI) sensor based on asymmetric supermode interferences in tapered four core fiber (TFCF). To make TFCF-based RI sensors, the whitelight was launched into any one of the cores to define the excitation orientation and is called a vertex-core excitation scheme. When the four-core fiber (FCF) was gradually tapered, the four cores gathered closer and closer. Originally, the power coupling occurred between its two neighboring cores first and these three cores are grouped to produce supermodes. Subsequently, the fourth diagonal core enters the evanescent field overlapping region to excite asymmetric supermodes interferences. The output spectral responses of the two cores next to the excitation core are mutually in phase whereas the spectral responses of the diagonal core are in phase and out of phase to that of the excitation core at the shorter and longer wavelengths, respectively. Due to the lowest limitation of the available refractive index of liquids, the best sensitivity can be achieved when the tapered diameter is 10 μm and the best RI sensitivity S is 3249 nm/RIU over the indices ranging from 1.41–1.42. This is several times higher than that at other RI ranges due to the asymmetric supermodes.


2022 ◽  
Author(s):  
Haowen Chen ◽  
Yunping Qi ◽  
Jinghui Ding ◽  
Yujiao Yuan ◽  
Zhenting Tian ◽  
...  

Abstract A plasmonic resonator system consisting of a metal-insulator-metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are investigated using the finite difference in time domain (FDTD) method, and the simulation results contain two resonant dips. And the physical mechanism is studied by the multimode interference coupled mode theory (MICMT), the theoretical results are in highly consistent with the simulation results. Furthermore, the parameters of the Q-shaped cavity can be controlled to adjust two dips respectively. The refractive index sensor with a sensitivity of 1578nm/RIU and figure of merit (FOM) of 175, performs better than most of the similar structures. Therefore, the results of the study are instructive for the design and application of high sensitivity nanoscale refractive index sensors.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 172
Author(s):  
Oleg Kameshkov ◽  
Vasily Gerasimov ◽  
Boris Knyazev

Terahertz surface plasmon resonance (SPR) sensors have been regarded as a promising technology in biomedicine due to their real-time, label-free, and ultrasensitive monitoring features. Different authors have suggested a lot of SPR sensors, including those based on 2D and 3D metamaterials, subwavelength gratings, graphene, and graphene nanotube, as well as others. However, one of the traditional approaches to realize high sensitivity SPR sensors based on metal diffraction gratings has been studied poorly in the terahertz frequency range. In this article, a linear metal rectangular diffraction grating with high aspect ratio is studied. The influence of the grating structure parameters on the sensor sensitivity is simulated. Effects arising from different ratios of depth and width were discovered and explained. The results show that the sensitivity can be increased to 2.26 THz/RIU when the refractive index range of the gas to measure is between 1 and 1.002 with the resolution 5×10−5 RIU.


2021 ◽  
pp. 413469
Author(s):  
Thu Trang Hoang ◽  
Thanh Son Pham ◽  
Xuan Bach Nguyen ◽  
Huu Tu Nguyen ◽  
Khai Q. Le ◽  
...  

2021 ◽  
Vol 21 (11) ◽  
pp. 5535-5541
Author(s):  
Thu Trang Hoang ◽  
Van Dai Pham ◽  
Thanh Son Pham ◽  
Khai Q. Le ◽  
Quang Minh Ngo

We report a numerical study of D-shaped photonic crystal fiber based plasmonic refractive index sensor with high resolution and sensitivity in the near-infrared region. D-shaped photonic crystal fiber is formed by side polishing one part of photonic crystal fiber. It has a polishing surface where plasmonic gold layer is coated to modulate the resonant wavelength and enhance the refractive index sensitivity. Several D-shaped photonic crystal fiber plasmonic sensors with various distances from the photonic crystal fiber’s core to the polishing surface and gold thicknesses are designed and their characteristics are analyzed by the finite element method. The simulation results indicate that distance from the photonic crystal fiber’s core to the polishing surface causes modifications in the loss intensity, the resonant wavelength, and the refractive index sensitivity of D-shaped photonic crystal fiber plasmonic sensor. Mass production of refractive index sensors were achieved using a simple fabrication process, whereby the D-shaped photonic crystal fiber is grinded where distance from the photonic crystal fiber’s core to the polishing surface is less than one layer thickness and then coated with the gold layer. For the refractive index sensing applications, the maxima theoretical resolution and sensitivity of D-shaped photonic crystal fiber plasmonic sensor reach 2.98 × 10 6refractive index unit and 6,140 nm/refractive index unit in range of 1.30–1.37, respectively. We also report an initial fabrication of the D-shaped photonic crystal fiber following the standard stack-and- draw method to demonstrate the feasibility of the proposed device by using our in-house equipments. The proposed D-shaped photonic crystal fiber plasmonic sensor design in this work would be useful for the development of cheap refractive index sensors with high sensitivity and resolution.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2212
Author(s):  
Jiahao Yang ◽  
Yu-Sheng Lin

We present two types of refractive index sensors by using tunable terahertz (THz) metamaterial (TTM) based on two concentric split-ring resonators (SRRs) with different splits. By modifying the distance between SRRs and substrate, TTM shows tunable single- and dual-resonance characteristic. The maximum tuning range of resonance is 0.432 THz from 0.958 THz to 1.390 THz. To demonstrate a great flexibility of TTM in real application, TTM device is exposed on the surrounding ambient with different refractive index (n). The sensitivity of TTM can be enhanced by increasing SRR height, which is increased from 0.18 THz/RIU to 1.12 THz/RIU under the condition of n = 1.1. These results provide a strategy to improve the sensing performance of the metamaterial-based sensing device by properly arranging the geometric position of meta-atoms. The proposed TTM device can be used for tunable filters, frequency-selective detectors, and tunable high-efficiency sensors in the THz frequency range.


Sign in / Sign up

Export Citation Format

Share Document