scholarly journals Difference in the Alveolar Bone Remodeling Between the Adolescents and Adults During Upper Incisor Retraction: a Retrospective Study

Author(s):  
Ya Zheng ◽  
Chenjing Zhu ◽  
Meng Zhu ◽  
Lang Lei

Abstract Background: The purpose of this study was to compare the difference of alveolar bone remodeling between the adolescents and adults in the maxillary incisor area during retraction. Methods: This retrospective study included 72 female patients who needed moderate anchorage to correct the bimaxillary protrusion. Subjects were further divided into the minor group (n=36, 11-16 years old) and adult group (n=36, 18-35 years old). Digital lateral cephalography and cone beam CT scanning were taken in each patient before (T0) and after treatment (T1). Cephalometry was conducted to assess incisor retraction, while alveolar bone thickness (ABT), alveolar bone distance (ABD, and alveolar bone area (ABA) were detected to assess changes in the alveolar bone. Results: No difference in the inclination of upper incisors was observed at both T0 and T1. Changes in the alveolar bone showed a similar tendency with bone apposition on the labial side and resorption on the palatal side. Less increase in the labial ABT (T1-T0) and more decrease in the palatal ABT (T1-T0) was found in the adult group, leading to less total ABT in the adult group. Higher reduction inn ABD (T1-T0) was found in the adult group. Moreover, more decrease in the ABA (T1-T0) was found in the adult group. Conclusion: When compared adolescents, adult patients have less alveolar bone support after orthodontic treatment, showing a through-the-bone remodeling pattern. Orthodontic should take the age into consideration to reduce the potential periodontal risks during treatment planning.

2009 ◽  
Vol 79 (5) ◽  
pp. 880-884 ◽  
Author(s):  
Kazem S. Al-Nimri ◽  
Abdalla M. Hazza'a ◽  
Rami M. Al-Omari

Abstract Objective: To test the hypothesis that the magnitude of alteration in the position of point A is not associated with proclination of the upper incisors in Class II division 2 malocclusion. Materials and Methods: Cephalometric films were taken for 30 Class II division 2 patients (8 males and 22 females; average age, 18.3 years) before and after upper incisor proclination. The total change in the position of point A was measured by superimposing the pretreatment and postproclination lateral cephalograms on the sella-nasion line at the sella. To determine the local effect of alveolar bone remodeling associated with upper incisor proclination on the position of point A, postproclination tracing of the maxilla was superimposed on the pretreatment tracing according to the Bolton template of maxillary superimposition. Results: The total vertical displacement in Point A position was downward by 0.84 mm (P = .002), and the total horizontal displacement was forward by 0.45 mm (P = .054). Assessment of local changes in point A revealed that the position of point A had moved backward by 0.60 mm (P = .001). No significant change was observed in the value of the sella-nasion–point A angle (SNA). Conclusion: The hypothesis is rejected. The position of point A is affected by local bone remodeling associated with proclination of the upper incisor in Class II division 2 malocclusion, but this minor change does not significantly affect the SNA angle.


2020 ◽  
Author(s):  
Huimin Mao ◽  
Andi Yang ◽  
Yue Pan ◽  
Houxuan Li ◽  
Lang LEI

Abstract Background: Periodontal health is of great concern for periodontists and orthodontists in the inter-disciplinary management of patients with bimaxillary protrusion. The aim of present study is to investigate changes in the alveolar bone in the maxillary incisor region and to explore its relationship with displacement of root apex as well as changes in the inclination of maxillary incisors during incisor retraction. Methods: Samples in this retrospective study consisted of 38 patients with bimaxillary protrusion. Cone-beam computed tomography (CBCT) images was taken before(T0) and after (T1) treatment. Alveolar bone thickness (ABT), height (ABH) and area (ABA) were utilized to evaluate changes in the alveolar bone, while incisor inclination and apex displacement were used to assess changes in the position of maxillary central and lateral incisors. Correlations between alveolar bone remodeling and apex displacement as well as changes in the inclination were investigated. Results: The labial ABT of central and lateral incisors at the mid-root third was increased. In contrast, the palatal ABT at crestal, mid-root and apical third level were consistently decreased. ABH was not altered on the labial side, while significantly decreased on the palatal side. ABA was not significantly increased on the labial side, but significantly decreased on the palatal side, leading to a significantly reduced total ABA. Orthodontic treatment significantly reduced inclination of upper incisors. Changes in the amount (T1-T0) of ABA was remarkably correlated with apex displacement and changes of inclination (T1-T0); in addition, using the multivariate linear regression analysis, changes of ABA on the palatal side (T1-T0) can be described by following equation: Changes of palatal ABA (T1-T0) = -3.258- 0.139× changes of inclination (T1-T0) + 2.533×apex displacement (T1-T0). Conclusions: Retraction of incisors in bimaxillary protrusion patients may compromise periodontal bone support on the palatal side. An equation that incorporated the displacement of root apex and change in the incisor inclination may enable periodontist-orthodontist interdisciplinary coordination in assessing treatment risks and developing an individualized treatment plan for adult patients with bimaxillary protrusion.


2019 ◽  
Author(s):  
Huimin Mao ◽  
Andi Yang ◽  
Yue Pan ◽  
Houxuan Li ◽  
lang lei

Abstract Background Periodontal risk is of great concern for periodontists and orthodontists in the inter-disciplinary management of patients with bimaxillary protrusion. The aim of present study is to investigate changes in the alveolar bone in the maxillary incisor region and to explore its relationship with displacement of root apex as well as changes in the inclination of maxillary incisors during incisor retraction.Methods Samples in this retrospective study consisted of 38 patients with bimaxillary protrusion. Cone-beam computed tomography (CBCT) images was taken before(T0) and after (T1) treatment. Alveolar bone thickness (ABT), height (ABH) and area (ABA) were utilized to evaluate changes in the alveolar bone, while incisor inclination and apex displacement were used to assess changes in the position of maxillary central and lateral incisors. Correlations between alveolar bone remodeling and apex displacement as well as changes in the inclination were investigated.Results The labial ABT of central and lateral incisors at the mid-root third was increased. In contrast, the palatal ABT at crestal, mid-root and apical third level were consistently decreased. ABH was not altered on the labial side, while significantly decreased on the palatal side. ABA was not significantly increased on the labial side, but significantly decreased on the palatal side, leading to a significantly reduced total ABA. Orthodontic treatment significantly reduced inclination of upper incisors. Changes in the amount (T1-T0) of ABA was remarkably correlated with apex displacement and changes of inclination (T1-T0); in addition, using the multivariate linear regression analysis, changes of ABA on the palatal side (T1-T0) can be described by following equation: Changes of palatal ABA (T1-T0) = -3.258- 0.139× changes of inclination (T1-T0) + 2.533×apex displacement (T1-T0).Conclusions Retraction of incisors in bimaxillary protrusion patients may compromise periodontal bone support on the palatal side. An equation that incorporated the displacement of root apex and change in the incisor inclination may enable periodontist-orthodontist interdisciplinary coordination in assessing treatment risks and developing an individualized treatment plan for adult patients with bimaxillary protrusion.


2016 ◽  
Vol 8 (1) ◽  
pp. 21-24
Author(s):  
Darshit Dhanani ◽  
G Shivaprakash

ABSTRACT Aim To evaluate the extent of the alveolar bone remodeling after incisor retraction using lateral cephalograms. Materials and methods Lateral cephalograms of 30 patients with age of 16 years and above requiring therapeutic extraction of both maxillary and mandibular first premolars, mainly for the purpose of retraction of anterior teeth, had been taken at the start of treatment and after retraction of anterior teeth. Various hard tissue anatomical landmarks were traced, and linear parameters of pretreatment (T1) and postretraction (T2) lateral cephalometric radiographs were measured. The mean and standard deviation were calculated, the data were tabulated, and comparison of T1 and T2 readings was made utilizing paired Student’s t-test. Results When maxillary incisors are retracted, the labial bone thickness at the midroot level (MxL2) and at apical level (MxL3) increased during upper incisor retraction. There was a significant reduction in alveolar bone thickness on the lingual/palatal side after maxillary and mandibular incisor retraction. Conclusion When tooth movement is limited, forcing the tooth against the cortical bone may cause adverse sequelae. This type of approach must be carefully monitored to avoid negative iatrogenic effects. How to cite this article Dhanani D, Shivaprakash G. Cephalometric Evaluation of Alveolar Bone Remodeling following Anterior Teeth Retraction. CODS J Dent 2016;8(1):21-24.


2020 ◽  
Author(s):  
Huimin Mao ◽  
Andi Yang ◽  
Yue Pan ◽  
Houxuan Li ◽  
Lang LEI

Abstract Background: Periodontal health is of great concern for periodontists and orthodontists in the inter-disciplinary management of patients with bimaxillary protrusion. The aim of present study is to investigate changes in the alveolar bone in the maxillary incisor region and to explore its relationship with displacement of root apex as well as changes in the inclination of maxillary incisors during incisor retraction.Methods: Samples in this retrospective study consisted of 38 patients with bimaxillary protrusion. Cone-beam computed tomography (CBCT) images was taken before(T0) and after (T1) treatment. Alveolar bone thickness (ABT), height (ABH) and area (ABA) were utilized to evaluate changes in the alveolar bone, while incisor inclination and apex displacement were used to assess changes in the position of maxillary central and lateral incisors. Correlations between alveolar bone remodeling and apex displacement as well as changes in the inclination were investigated.Results: The labial ABT of central and lateral incisors at the mid-root third was increased. In contrast, the palatal ABT at crestal, mid-root and apical third level were consistently decreased. ABH was not altered on the labial side, while significantly decreased on the palatal side. ABA was not significantly increased on the labial side, but significantly decreased on the palatal side, leading to a significantly reduced total ABA. Orthodontic treatment significantly reduced inclination of upper incisors. Changes in the amount (T1-T0) of ABA was remarkably correlated with apex displacement and changes of inclination (T1-T0); in addition, using the multivariate linear regression analysis, changes of ABA on the palatal side (T1-T0) can be described by following equation: Changes of palatal ABA (T1-T0) = -3.258- 0.139× changes of inclination (T1-T0) + 2.533×apex displacement (T1-T0).Conclusions: Retraction of incisors in bimaxillary protrusion patients may compromise periodontal bone support on the palatal side. An equation that incorporated the displacement of root apex and change in the incisor inclination may enable periodontist-orthodontist interdisciplinary coordination in assessing treatment risks and developing an individualized treatment plan for adult patients with bimaxillary protrusion. Moreover, the equation in predicating area of alveolar bone may reduce the risks of placing the teeth out of the bone boundary during 3D digital setups.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Huimin Mao ◽  
Andi Yang ◽  
Yue Pan ◽  
Houxuan Li ◽  
Lang Lei

Abstract Background Periodontal health is of great concern for periodontists and orthodontists in the inter-disciplinary management of patients with bimaxillary protrusion. The aim of present study is to investigate changes in the alveolar bone in the maxillary incisor region and to explore its relationship with displacement of root apex as well as changes in the inclination of maxillary incisors during incisor retraction. Methods Samples in this retrospective study consisted of 38 patients with bimaxillary protrusion. Cone-beam computed tomography (CBCT) images was taken before(T0) and after (T1) treatment. Alveolar bone thickness (ABT), height (ABH) and area (ABA) were utilized to evaluate changes in the alveolar bone, while incisor inclination and apex displacement were used to assess changes in the position of maxillary central and lateral incisors. Correlations between alveolar bone remodeling and apex displacement as well as changes in the inclination were investigated. Results The labial ABT of central and lateral incisors at the mid-root third was increased. In contrast, the palatal ABT at crestal, mid-root and apical third level were consistently decreased. ABH was not altered on the labial side, while significantly decreased on the palatal side. ABA was not significantly increased on the labial side, but significantly decreased on the palatal side, leading to a significantly reduced total ABA. Orthodontic treatment significantly reduced inclination of upper incisors. Changes in the amount (T1-T0) of ABA was remarkably correlated with apex displacement and changes of inclination (T1-T0); in addition, using the multivariate linear regression analysis, changes of ABA on the palatal side (T1-T0) can be described by following equation: Changes of palatal ABA (T1-T0) = − 3.258- 0.139× changes of inclination (T1-T0) + 2.533 × apex displacement (T1-T0). Conclusions Retraction of incisors in bimaxillary protrusion patients may compromise periodontal bone support on the palatal side. An equation that incorporated the displacement of root apex and change in the incisor inclination may enable periodontist-orthodontist interdisciplinary coordination in assessing treatment risks and developing an individualized treatment plan for adult patients with bimaxillary protrusion. Moreover, the equation in predicating area of alveolar bone may reduce the risks of placing the teeth out of the bone boundary during 3D digital setups.


2020 ◽  
Author(s):  
Huimin Mao ◽  
Andi Yang ◽  
Yue Pan ◽  
Houxuan Li ◽  
lang lei

Abstract Background: Periodontal health is of great concern for periodontists and orthodontists in the inter-disciplinary management of patients with bimaxillary protrusion. The aim of present study is to investigate changes in the alveolar bone in the maxillary incisor region and to explore its relationship with displacement of root apex as well as changes in the inclination of maxillary incisors during incisor retraction. Methods: Samples in this retrospective study consisted of 38 patients with bimaxillary protrusion. Cone-beam computed tomography (CBCT) images was taken before(T0) and after (T1) treatment. Alveolar bone thickness (ABT), height (ABH) and area (ABA) were utilized to evaluate changes in the alveolar bone, while incisor inclination and apex displacement were used to assess changes in the position of maxillary central and lateral incisors. Correlations between alveolar bone remodeling and apex displacement as well as changes in the inclination were investigated. Results: The labial ABT of central and lateral incisors at the mid-root third was increased. In contrast, the palatal ABT at crestal, mid-root and apical third level were consistently decreased. ABH was not altered on the labial side, while significantly decreased on the palatal side. ABA was not significantly increased on the labial side, but significantly decreased on the palatal side, leading to a significantly reduced total ABA. Orthodontic treatment significantly reduced inclination of upper incisors. Changes in the amount (T1-T0) of ABA was remarkably correlated with apex displacement and changes of inclination (T1-T0); in addition, using the multivariate linear regression analysis, changes of ABA on the palatal side (T1-T0) can be described by following equation: Changes of palatal ABA (T1-T0) = -3.258- 0.139× changes of inclination (T1-T0) + 2.533×apex displacement (T1-T0). Conclusions: Retraction of incisors with palatal apex displacement reduced periodontal bone support on the palatal side. An equation that incorporated the displacement of root apex and change in the incisor inclination may enable periodontist-orthodontist interdisciplinary coordination in assessing treatment risks and developing an individualized treatment plan for adult patients with bimaxillary protrusion.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Seok Yoon Hong ◽  
Jeong Won Shin ◽  
Christine Hong ◽  
Vania Chan ◽  
Un-Bong Baik ◽  
...  

Abstract Background Maxillary incisor protrusion is a prevalent dental deformity and is often treated by upper incisor intrusion and retraction. The mechanical loading triggers the resorption and apposition of the bone. Alveolar bone remodeling is expected to follow orthodontic tooth movement in a one-to-one relationship. However, in many cases, the outcomes are different. Alveolar bone might still remain thick causing lip protrusion and other aesthetic problems after treatment. Additional corrective procedures such as alveoloplasty. On the other hand, if the labial bone becomes too thin, periodontal problems like gingival recession might occur. The unpredictability of the treatment result and the risk of requiring corrective procedures pose significant challenges to both the providers and patients. The aim of this study is to determine factors that can help to predict the alveolar bone reaction before maxillary incisor intrusion and retraction. Methods The cohort included 34 female patients (mean age 25.8 years) who were diagnosed with skeletal class II malocclusion with upper incisor protrusion. These patients underwent extraction and orthodontic treatment with upper incisor intrusion and retraction. Lateral cephalograms at pre-treatment and post-treatment were taken. Linear and angular measurements were analyzed to evaluate the alveolar bone changes based on initial conditions. Results The study found that the relative change, calculated as change in alveolar bone thickness after treatment divided by the initial alveolar thickness, was inversely correlated with the initial thickness. There was a significant increase of labial alveolar bone thickness at 9-mm apical from cementoenamel junction (B3) (P < 0.05) but no statistically significant change in the thickness at other levels. In addition, the change in angulation between the incisor and alveolar bone was inversely correlated with several initial angulations: between the initial palatal plane and upper incisor angle, between the initial palatal plane and upper incisor labial surface angle, and between the initial palatal plane and bone labial surface angle. On the other hand, the change in labial bone thickness was neither significantly correlated with the initial thickness nor significantly correlated to the amount of retraction. Conclusion The unpredictability of alveolar bone remodeling after upper incisor intrusion and retraction poses significant challenges to treatment planning and patient experience. The study showed that the initial angulation between the incisor and alveolar bone is correlated with the change in angulation after treatment, the initial thickness of the alveolar bone was correlated with the relative change of the alveolar bone thickness (defined as change in thickness after treatment divided by its initial thickness), and the amount of intrusion was correlated with the alveolar bone thickness change at 9-mm apical from the cementoenamel junction after treatment. The results of the present study also revealed that the change in labial alveolar bone thickness was neither significantly correlated with the initial thickness nor significantly correlated to the amount of retraction.


2021 ◽  
pp. 002203452110199
Author(s):  
Y. Xie ◽  
Q. Tang ◽  
S. Yu ◽  
W. Zheng ◽  
G. Chen ◽  
...  

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs) sensing biomechanical stimuli and subsequently releasing signals to initiate alveolar bone remodeling. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities are still unclear. This study demonstrates that the core circadian protein aryl hydrocarbon receptor nuclear translocator–like protein 1 (BMAL1) in PDLCs is highly involved in sensing and delivering biomechanical signals. Orthodontic force upregulates BMAL1 expression in periodontal tissues and cultured PDLCs in manners dependent on ERK (extracellular signal–regulated kinase) and AP1 (activator protein 1). Increased BMAL1 expression can enhance secretion of CCL2 (C-C motif chemokine 2) and RANKL (receptor activator of nuclear factor–κB ligand) in PDLCs, which subsequently promotes the recruitment of monocytes that differentiate into osteoclasts. The mechanistic delineation clarifies that AP1 induced by orthodontic force can directly interact with the BMAL1 promoter and activate gene transcription in PDLCs. Localized administration of the ERK phosphorylation inhibitor U0126 or the BMAL1 inhibitor GSK4112 suppressed ERK/AP1/BMAL1 signaling. These treatments dramatically reduced osteoclastic activity in the compression side of a rat orthodontic model, and the OTM rate was almost nonexistent. In summary, our results suggest that force-induced expression of BMAL1 in PDLCs is closely involved in controlling osteoclastic activities during OTM and plays a vital role in alveolar bone remodeling. It could be a useful therapeutic target for accelerating the OTM rate and controlling pathologic bone-remodeling activities.


1994 ◽  
Vol 266 (5) ◽  
pp. E731-E738 ◽  
Author(s):  
C. Dolce ◽  
J. Anguita ◽  
L. Brinkley ◽  
P. Karnam ◽  
M. Humphreys-Beher ◽  
...  

Effects on bone remodeling have been attributed to epidermal growth factor (EGF). Sialoadenectomy (SX) removes the major source of EGF in rodents and decreases both salivary and serum EGF levels. EGF effects on rat alveolar bone remodeling manifested by molar drift (MD) and orthodontic tooth movement (OTM) were examined using the following two approaches: 1) EGF depletion by SX and replacement by orally administered EGF (50 micrograms.animal-1.day-1); 2) sham rats supplemented with matching amounts of EGF. MD and OTM were measured using cephalometric radiographs; bone formation was measured histomorphometrically using tetracycline labeling. Normal MD was not detected after SX, and alveolar bone formation was significantly reduced both around the tooth and in nondental sites. Replacement EGF given to SX rats and supplemental EGF administered to sham rats changed the direction and enhanced the rate of MD. A mesially directed orthodontic force applied to the molars of SX animals increased bone formation on the distal aspect of the tooth roots. Supplemental EGF did not significantly affect OTM. EGF affects alveolar bone remodeling, as manifested clinically by alterations in normal maxillary MD.


Sign in / Sign up

Export Citation Format

Share Document